
1

ARM Low-power Processors

and Architectures

Dan Millett
Verification Enablement

Processor Division

2

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

3

ARM Ltd

 Founded in November 1990

 Spun out of Acorn Computers

 Initial funding from Apple, Acorn and VLSI

 Designs the ARM range of RISC processor cores

 Licenses ARM core designs to semiconductor
partners who fabricate and sell to their
customers

 ARM does not fabricate silicon itself

 Also develop technologies to assist with the design-
in of the ARM architecture

 Software tools, boards, debug hardware

 Application software

 Bus architectures

 Peripherals, etc

4

ARM’s Activities

memory

SoC

Processors

System Level IP:

Data Engines

Fabric

3D Graphics

Physical IP

Software IP

Development Tools

Connected Community

5

ARM Connected Community – 700+

5

6

Huge Range of Applications

Energy Efficient Appliances

IR Fire

Detector

Intelligent

Vending

Tele-parking

Utility

Meters

Exercise

Machines Intelligent toys

Equipment Adopting 32-bit ARM

Microcontrollers

7

Ultra Low Cost
Mobile phones

~100%
market share

How many ARM’s Do You Have?

Ultra Low Cost
Mobile Computers

5x 100%
market share

 Smartphones

3x 100%
market share

Ultra Low Cost
Digital TVs

35%
market share

Ultra Low Cost
Disk Drives

~75%
market share

Ultra Low Cost
PC Peripherals

40%
market share

Ultra Low Cost
Microcontrollers

35%
market share

Ultra Low Cost
Cars

5x 50%
market share

http://images.google.com/imgres?imgurl=http://www.bpesolutions.com/pgimages/robotarm2.jpg&imgrefurl=http://www.bpesolutions.com/photo7.html&h=394&w=558&sz=27&tbnid=G8euluzq9JeuLM:&tbnh=92&tbnw=131&hl=en&start=1&prev=/images?q=robot+arm&svnum=10&hl=en&lr=

8

Huge Opportunity For ARM Technology

1998 2011 2020

billion
25+

cores to date

100+
billion cores accumulated

after next 9 yrs

9

World’s Smallest ARM Computer?

A C B

Wirelessly networked into large scale

sensor arrays

Battery Solar Cells

Processor, SRAM and PMU

University of Michigan

Sensors, timers

Cortex-M0 +16KB RAM 65nm

UWB Radio antenna

10 kB Storage memory

~3fW/bit

12µAh Li-ion Battery

Wireless Sensor Network

Cortex-M0; 65¢

10

World’s Largest ARM Computer?

4200 ARM powered

Neutrino Detectors

Work supported by the National Science Foundation and University of Wisconsin-Madison

70 bore holes 2.5km deep

60 detectors per string

starting 1.5km down

1km3 of active telescope

11

From 1mm3 to 1km3

1mm3 1km3

10¢ $1000

 Mobile

 Embedded Consumer

 Mobile Computing Server

Enterprise PC

Home

HPC

12

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

13

ARM Cortex Advanced Processors

ARM Cortex-A family:

 Applications processors

 Targeted for OS’s, graphics, demanding tasks

ARM Cortex-R family:

 Embedded processors

 Real-time signal processing, control applications

ARM Cortex-M family:

 Microcontroller-oriented processors

 MCU, ASSP, and SoC applications

12k gates...

Cortex-M4

SC300

Cortex-M3

Cortex-M1

Cortex-M0

SC000

...2.5GHz

Cortex-A5
x1-4

Cortex-A8

Cortex-A9
x1-4

Cortex-A15
x1-4

Cortex-R5
1-2

Cortex-R4

1-2

Cortex-R7

14

Relative Performance*

*Represents attainable speeds in 130, 90, 65, or 45nm processes

Cortex-
M0

Cortex-
M3

ARM7 ARM926 ARM1026 ARM1136 ARM1176 Cortex-A8
Cortex-A9
Dual-core

Max Freq (MHz) 50 150 184 470 540 610 750 1100 2000

Min Power (mW/MHz) 0.012 0.06 0.35 0.235 0.36 0.335 0.568 0.43 0.5

0

500

1000

1500

2000

2500

M
a
x
 F

re
q

u
e
n

c
y
 (

M
h

z
)

15

Cortex family

Cortex-A8

 Architecture v7A

 MMU

 AXI

 VFP & NEON support

Cortex-R4

 Architecture v7R

 MPU (optional)

 AXI

 Dual Issue

Cortex-M3

 Architecture v7M

 MPU (optional)

 AHB Lite & APB

16

Data Sizes and Instruction Sets

 The ARM is a 32-bit architecture.

 When used in relation to the ARM:

 Byte means 8 bits

 Halfword means 16 bits (two bytes)

 Word means 32 bits (four bytes)

 Most ARM’s implement two instruction sets

 32-bit ARM Instruction Set

 16-bit Thumb Instruction Set

 Jazelle cores can also execute Java bytecode

17

ARM and Thumb Performance

Memory width (zero wait state)

0

5000

10000

15000

20000

25000

30000

32-bit 16-bit 16-bit with

32-bit stack

ARM

Thumb

Dhrystone 2.1/sec

@ 20MHz

18

The Thumb-2 instruction set

 Variable-length instructions

 ARM instructions are a fixed length of 32 bits

 Thumb instructions are a fixed length of 16

bits

 Thumb-2 instructions can be either 16-bit or

32-bit

 Thumb-2 gives approximately 26%

improvement in code density over ARM

 Thumb-2 gives approximately 25%

improvement in performance over

Thumb

19

Processor Modes

 The ARM has seven basic operating modes:

 User : unprivileged mode under which most tasks run

 FIQ : entered when a high priority (fast) interrupt is raised

 IRQ : entered when a low priority (normal) interrupt is raised

 Supervisor : entered on reset and when a Software Interrupt

 instruction is executed

 Abort : used to handle memory access violations

 Undef : used to handle undefined instructions

 System : privileged mode using the same registers as user mode

20

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ Mode IRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set

21

Program Status Registers

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Architecture 5TE/J only

 Indicates if saturation has occurred

 J bit

 Architecture 5TEJ only

 J = 1: Processor in Jazelle state

 Interrupt Disable bits.

 I = 1: Disables the IRQ.

 F = 1: Disables the FIQ.

 T Bit

 Architecture xT only

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 Mode bits

 Specify the processor mode

27 31

N Z C V Q

28 6 7

I F T mode

16 23

8 15

5 4 0 24

f s x c

 U n d e f i n e d J

22

 ARM instructions can be made to execute conditionally by postfixing them with the

appropriate condition code field.

 This improves code density and performance by reducing the number of

forward branch instructions.

 CMP r3,#0 CMP r3,#0

 BEQ skip ADDNE r0,r1,r2

 ADD r0,r1,r2

skip

 By default, data processing instructions do not affect the condition code flags but

the flags can be optionally set by using “S”. CMP does not need “S”.

 loop

 …

 SUBS r1,r1,#1

 BNE loop

 if Z flag clear then branch

 decrement r1 and set flags

Conditional Execution and Flags

23

Load/Store

Miscellaneous

Classes of Instructions

Data Operations

MOV PC, Rm

Bcc

BL

BLX

Change of Flow

24

 Branch : B{<cond>} label

 Branch with Link : BL{<cond>} subroutine_label

 The processor core shifts the offset field left by 2 positions, sign-extends it

and adds it to the PC

 ± 32 Mbyte range

 How to perform longer branches?

28 31 24 0

 Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

23 25 27

Branch instructions

25

Data processing Instructions

 Consist of :

 Arithmetic: ADD ADC SUB SBC RSB RSC

 Logical: AND ORR EOR BIC

 Comparisons: CMP CMN TST TEQ

 Data movement: MOV MVN

 These instructions only work on registers, NOT memory.

 Syntax:

 <Operation>{<cond>}{S} Rd, Rn, Operand2

 Comparisons set flags only - they do not specify Rd

 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.

26

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of

another register.

 Used for multiplication by constant

Immediate value

 8 bit number, with a range of 0-255.

 Rotated right through even

number of positions

 Allows increased range of 32-bit

constants to be loaded directly into

registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Using a Barrel Shifter:The 2nd Operand

27

Data Processing Instruction Examples

 MOV r3, r0 ; copies r0 into r3

 MVN r6, r8 ; copies the complement of r8 into r6

 ADD r0, r1, r2 ; r0 = r1 + r2

 ADC r0, r1, r2 ; r0 = r1 + r2 + <carry flag>

 SUB r3, r1, r7 ; r3 = r1 – r7

 RSB r3, r1, r7 ; r3 = r7 – r1

 SBC r3, r1, r7 ; r3 = r1 – (r7 + <carry flag>)

 AND r0, r1, #0xA5 ; r0 = r1 & 0xA5

 BIC r0, r1, #0xA5 ; r0 = r1 with bits 0,2,5,and 7 cleared

 ORR r0, r1, #0xA5 ; r0 = r1 with bits 0,2,5,and 7 set

 CMP r5, r9 ; same as SUBS, but only affects APSR

 CMN r0, r1 ; same as ADDS, but only affects APSR

 TST r0, r1 ; same as ANDS, but only affects APSR

 TEQ r0, r1 ; same as EORS, but only affects APSR

28

 Use to move data between one or two registers and memory

 LDRD STRD Doubleword

 LDR STR Word

 LDRB STRB Byte

 LDRH STRH Halfword

 LDRSB Signed byte load

 LDRSH Signed halfword load

 Syntax

 LDR{<size>}{<cond>} Rd, <address>

 STR{<size>}{<cond>} Rd, <address>

Single / Double Register Data Transfer

Any remaining space
zero filled or sign extended

Memory

 Rd

31 0

29

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

30

Multiplier

The ARM7TDM Core

Instruction

Decoder

Address
Incrementer

nRESET

nMREQ
SEQ

ABORT

nIRQ
nFIQ

nRW
MAS[1:0]

LOCK

nCPI
CPA
CPB

nWAIT
MCLK

nOPC

BIGEND

ISYNC

nTRANS

nM[4:0]

D[31:0]

Barrel
Shifter

32 Bit ALU

DBE

Write Data
Register

Read Data

Register

Address Register

Register Bank

A[31:0] ABE

and

Control

Logic

PC Update

Decode Stage

Instruction
Decompression

Incrementer

P

C

A

B

u

s

B

B

u

s

A

L

U

B

u

s

31

Cortex-M3 Datapath

Register

Bank Mul/Div

Address

Incrementer

ALU

B

A

INTADDR

I_HADDR

Address

Register

Barrel

Shifter

Writeback

ALU

Read Data

Register

Write Data

Register

Instruction

Decode

I_HRDATA

D_HWDATA

D_HRDATA

Address

Incrementer

D_HADDR
Address

Register

32

Pipeline changes for ARM9TDMI

Instruction
Fetch

 Shift + ALU Memory
Access

Reg
Write Reg

Read
Reg

Decode

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

ARM or Thumb
Inst Decode

Reg Select

Reg
Read

Shift ALU
Reg

Write
ThumbARM
decompress

ARM decode
Instruction

Fetch

FETCH DECODE EXECUTE

ARM7TDMI

33

 Cortex-M3 has 3-stage fetch-decode-execute pipeline

 Similar to ARM7

 Cortex-M3 does more in each stage to increase overall

performance

Cortex-M3 Pipeline

Branch forwarding & speculation

1st Stage - Fetch 2nd Stage - Decode 3rd Stage - Execute

Execute stage branch (ALU branch & Load Store Branch)

Fetch

(Prefetch)

AGU

Instruction

Decode &

Register Read

Branch

Address

Phase & Write

Back

Data Phase

Load/Store &

Branch

Multiply & Divide

Shift ALU & Branch

Write

34

ARM10 vs. ARM11 Pipelines

ARM11

Fetch

1

Fetch

2
Decode Issue

Shift ALU Saturate

Write

back

MAC

1

MAC

2

MAC

3

Address

Data

Cache

1

Data

Cache

2

Shift + ALU
Memory

Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg Read

Multiply

Branch

Prediction

Instruction

Fetch

ISSUE

ARM or

Thumb

Instruction

Decode Multiply
Add

ARM10

35

Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline 10-Stage NEON Pipeline

NEON

Load queue

NEON

Instruction

Decode

Instruction Execute and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

LS pipe 0 or 1

 Instruction

Fetch

F1 F2F0 D1 D2 D3 D4

Instruction Decode

L3 memory system

BIU pipeline

L2 Data ArrayL2 Tag Array

L1 L2 L3 L4 L5 L6 L8

L1 data cache miss

L1 instruction cache miss

Branch mispredict penalty

NEON store data

Integer register writeback

NEON register writebackReplay penalty

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

D0 E0

L7
Embedded Trace Macrocell

T10T3T0 T4 T5 T6 T7 T8 T9T2T1 T11

M0

T13T12

MUL pipe 0

ALU pipe 0

ALU pipe 1

Integer ALU pipe

Integer MUL pipe

Integer shift pipe

Non-IEEE FP ADD pipe

Non-IEEE FP MUL pipe

IEEE FP engine

LS permute pipe

N
E

O
N

 re
g

is
te

r file

L2 data

External trace port

L1 data

36

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

37

TI OMAP35X SoC

38

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

39

Development Platforms

40

Keil Development Tools for ARM

 Includes ARM macro assembler, compilers (ARM RealView C/C++

Compiler, Keil CARM Compiler, or GNU compiler), ARM linker, Keil uVision

Debugger and Keil uVision IDE

 Keil uVision Debugger accurately simulates on-chip peripherals (I2C, CAN,

UART, SPI, Interrupts, I/O Ports, A/D and D/A converters, PWM, etc.)

 Evaluation Limitations

 16K byte object code + 16K data limitation

 Some linker restrictions such as base addresses for code/constants

 GNU tools provided are not restricted in any way

 http://www.keil.com/demo/

41

Keil Development Tools for ARM

42

University Resources

www.arm.com/university/

University@arm.com

http://www.arm.com/university/

43

Your Future at ARM…

 Graduate and Internship/Co-op Opportunities

 Engineering: Memory, Validation, Performance, DFT, R&D, GPU and more!

 Sales and Marketing: Corporate and Technical

 Corporate: IT, Patents, Services (Training and Support), and Human

Resources

 Incredible Culture and Comprehensive Benefit Package

 Competitive Reward

 Work/Life Balance

 Personal Development

 Brilliant Minds and Innovative Solutions

 Keep in Touch!

 www.arm.com/about/careers

https://twitter.com/
http://www.linkedin.com/profile/view?id=6622629&trk=tab_pro

44

TI Panda Board

OMAP4430 Processor

 1 GHz Dual-core ARM

Cortex-A9 (NEON+VFP)

 C64x+ DSP

 PowerVR SGX 3D GPU

 1080p Video Support

POP Memory

 1 GB LPDDR2 RAM

USB Powered
 < 4W max consumption

(OMAP small % of that)

 Many adapter options

(Car, wall, battery, solar, ..)

45

Fin

46

Nokia N95 Multimedia Computer

Symbian OS™ v9.2
Operating System supporting ARM

processor-based mobile devices,

developed using ARM® RealView®

Compilation Tools

OMAP™ 2420

Applications Processor
ARM1136™ processor-based

SoC, developed using Magma ®

Blast® family and winner of

2005 INSIGHT Award for ‘Most

Innovative SoC’

Connect. Collaborate. Create.

Mobiclip™ Video Codec
Software video codec for ARM

processor-based mobile devices

ST WLAN Solution
Ultra-low power 802.11b/g WLAN

chip with ARM9™ processor-based

MAC

S60™ 3rd Edition

S60 Platform supporting ARM

processor-based mobile devices

47

Beagle Board

48

$149

> 1000 participants
and growing

Open access to
hardware

documentation

Wikis, blogs,
promotion of
community

activity

Free
software

Freedom to
innovate

Personally
affordable

Active &
technical

community

Opportunity
to tinker and

learn

Instant access to
>10 million lines

of code

Addressing
open source
community

needs

Targeting community development

49

OMAP3530 Processor

 600MHz Cortex-A8

 NEON+VFPv3

 16KB/16KB L1$

 256KB L2$

 430MHz C64x+ DSP

 32K/32K L1$

 48K L1D

 32K L2

 PowerVR SGX GPU

 64K on-chip RAM

POP Memory

 128MB LPDDR RAM

 256MB NAND flash USB Powered

 2W maximum consumption

 OMAP is small % of that

 Many adapter options

 Car, wall, battery, solar, …

Peripheral I/O

 DVI-D video out

 SD/MMC+

 S-Video out

 USB 2.0 HS OTG

 I2C, I2S, SPI,

MMC/SD

 JTAG

 Stereo in/out

 Alternate power

 RS-232 serial

3”

Fast, low power, flexible expansion

50

Peripheral I/O

 DVI-D video out

 SD/MMC+

 S-Video out

 USB HS OTG

 I2C, I2S, SPI,

MMC/SD

 JTAG

 Stereo in/out

 Alternate power

 RS-232 serial

3”

Other Features

 4 LEDs

 USR0

 USR1

 PMU_STAT

 PWR

 2 buttons

 USER

 RESET

 4 boot sources

 SD/MMC

 NAND flash

 USB

 Serial

On-going collaboration at BeagleBoard.org

 Live chat via IRC for 24/7 community support

 Links to software projects to download

And more…

http://beagleboard.org/

51

Project Ideas Using Beagle

 OS Projects

 OS porting to ARM/Cortex (TI OMAP)

 MythTV system

 “Super-Beagle” – stack of Beagles as compute engine and task

distribution

 Linux applications

 NEON Optimization Projects

 Codec optimization in ffmpeg (pick your favorite codec)

 Voice and image recognition

 Open-source Flash player optimizations (swfdec)

