
EEL4713 Assignment #2
Spring 2012

Assigned: 9/13/12
In Lab Demo Due Date: 9/20/12

Due: 9/27/12 @ 11:55pm Via Sakai

Overview:
In this assignment you will be writing two programs and building more of the essential components for
your MIPS processor. The programs may be written in the language of your choice though some guides for
beginning programmers are provided for c, c++, python, and Matlab. The components designed will be
essential to the processor’s data path and are described in the Laboratory Section. In addition to the report,
you will also be giving a demo of two different parts of your laboratory section on the in lab demo due
date. You may show any two of the following deliverables: MIPS Assembler, MIPS Disassembler, add32,
alu32, alu32control, or registerFile. In the demo, you will show the TA the deliverable for the lab
demonstrating the functionality of your program or code. If you cannot get your program to perform
properly or your simulation shows your component working incorrectly by the time you declare you are
ready for submission, you may receive half-credit for the demo the following week. IMPORTANT: You
have until the end the lab period to perform your demo for the TA, however, the TA will leave when there
is no one else waiting in lab to demo. In short, do not show up late to the demo labs.

In this assignment, you will perform the following tasks:
1.1: Go through a beginners programming tutorial
1.2: Create a table detailing the MIPS ISA
2.1: Write and run the MIPS assembler program on lab3.txt
2.2: Write and run the MIPS disassembler program on lab5.mif
2.3: Build and simulate a 32-bit adder
2.4: Build and simulate an ALU
2.5: Build and simulate an ALU controller
2.6: Build and simulate a register file
3: Review deliverables, prepare for demo, and write report

Section 1: Setup
1.1: Go through a beginners programming tutorial
If you already are comfortable with a particular programming language and have a compiler to program
using that language, then you may skip using an online tutorial and jump to the next sub-section. If you
have never programmed before or are looking to try out a new language you should go through the guides
provided and reference them for code syntax support.

C/C++:
If you have never programmed, C is the recommended language to start. C is old and still used ubiquitously
in academia and industry. C++ is similar to C syntactically. but uses an object oriented constructs.
http://www.cprogramming.com/tutorial.html

Matlab:
You should have access to computers with Matlab in the NEB computer room. Matlab is a very quick
computational language good mostly for Matrix operations but it can also be used for text parsing as will be
done in section 2.1. Though Matlab is incredibly easy to use determining the proper functions to use to
properly parse through files may be difficult.
http://www.bumatek.boun.edu.tr/orgnizasyon/download/MATLAB_GUIDE_www.bumatek.boun.edu.tr.pd
f (beginners tutorial)
http://www.mathworks.com/help/techdoc/ (Mathworks help documentation)

Python:
Python is a scripting language that is very good for writing code quickly. Python is object oriented and may
be confusing if you have never experienced it. Python is open source and has a huge support community.
http://wiki.python.org/moin/BeginnersGuide

1.2: Create table detailing the MIPS ISA
In this part of the setup you will be creating a table that details the structure of the 29 MIPS instructions
you will be implementing. Include the following columns: Type (R, J, I), Opcode, function bits (for R-type
only), ALU function code (the one used by the ALU controller), ALU function performed, flags set (C, Z,
S, V). Your ALU controller and Assembler/Disassembler should match the table you make. The portion of
the table relating to ALU control signals should be similar to Figure 5.12 in your textbook that contains all
29 core instructions listed on the front of the green reference sheet (note: Figure 5.12 is based on a 2-bit
encoding of ALUop, but you will need to extend the encoding of ALUop to three bits to accommodate the
extra instructions)

Section 2: Laboratory
2.1: MIPS Assembler
You will now create an assembler in the language of your choice. Provided with this lab is a f.txt file
(linked off of the course schedule), your program must parse through this text file and produce a .mif file.
The mif file should look like the following

Sample MIF file: red is for comments, not for the format

WIDTH=32; size of your instructions
DEPTH=256; maximum length of your program

ADDRESS_RADIX=HEX; do not change
DATA_RADIX=HEX; do not change

CONTENT BEGIN
 000 : 3c050000;
 001 : 34a50100;
 002 : 34060908;
 003 : 3c1d0000;
 004 : afa50000;
 005 : a7a60004;
 006 : 34060b0a;
 007 : a7a60006;
 008 : 3c1e0000;
 009 : 37de0008;
 00A : 03c07820;
 END;

The text file provided will be in a human readable assembly format and should be translated to appear as
the above in a hexadecimal format. Your program will not need to be case sensitive and will only need to
work for text files provided by me. You can easily write your own text files as long as you follow the
format for writing in assembly. This is an example of how you would breakdown an Or immediate
instruction.

ori $6, $0, 0x0908

ori = opcode ‘d’ which is 0b001101
$6 is the target register, thus rt = 0b00110
$0 is the source register, thus rs = 0b00000
0x0908 is the immediate field

Your program would recognize this as an I-type instruction and thus would use the breakdown to create a
bit-stream

Opcode Rs Rt Immediate field
001101 00000 00110 0000100100001000

Concatenating the different parts will give a 32-bit binary representation of our instruction, which we will
then convert to hexadecimal. In this case it turns into 34060908.

In addition your program should also recognize labels for jumping and branching in the code. Labels will
be marked with a colon at the end and when called, will use the label name without the colon. For example:

ori $6, $0, 0x0908
ori $7, $0, 0x0607
loop:
add $5, $6, $7
beq $6, $6, loop

See chapter 2.10 of your textnook to understand how the location of labels in your code will be addressed
in your code assembly. Your code’s starting location for this assignment is 0x00400000.

Question 2.1.1: breakdown the following instructions into binary tables similar to the example:
(a) OR $4, $5, $2
(b) JR $3
(c) BNE $6, $6, loop (with the loop label two instructions before this instruction)

Question 2.1.2: If the loop label for part (c) of the previous question is 2 instructions after the branch, what
is the immediate field value in hex?

Question 2.1.3: What is the furthest distance in number of instructions that can be branched to in the MIPS
ISA? How could you branch to locations further away with this limitation?

2.2 MIPS Disassembler
You will now create a disassembler to convert the .mif file Lab5.mif (linked off of the course schedule)
into human readable text. There will be two qualifications for your program to be considered to be fully
working.

1) The human readable code provided is in the proper format
2) The text file produced can be used by your assembler program to recreate the mif file it was

produced from
Your text file should appear as simple text. No header or footer is required. You should use the Lab3.txt
file as an example of what the human readable code should look like.

To receive full credit for this lab, you will show the output text file from Lab5.mif and then use that same
text file as an input to the assembler created in section 2.1. The output of the assembler should be identical
to the input of the disassembler.

Question 2.2.1: If your mif file has 21 instructions with 3 branches that all go to the same location in your
code and 1 jump that goes to its own location in a loop, how many lines should your human readable text
file be (a label takes up one line)?

Question 2.2.2: Is your data memory byte addressable in your MIPS processor? How can you tell this from
the ISA?

VHDL design
You will continue your design of a MIPS datapath. Below are the descriptions of several crucial
components needed for datapath construction:

There will be situations in your datapath design where you will need to add two 32-bit data words. To
accomplish this design, you will simulate a 32-bit adder called “add32”. This component should have two
32-bit input signals called “in0” and “in1” and one 32-bit output word called “sum” that is the sum of the
two input words. Compile, simulate, and test your design. Turn in the VHDL entity, architecture, and a

printout of a simulation trace showing the following combinations of input words and a few others of your
choosing: (do not forget to annotate your simulations!)

• both inputs are 2's complement positive numbers
• both inputs are 2's complement negative numbers
• one input is a 2's complement negative number and the other is a 2's complement positive number
• both inputs are unsigned numbers
• both inputs are 0xFFFFFFFF
• both inputs are 0x00000000
• both inputs are 0x80000000

Next you will design the ALU and ALU control for the single cycle implementation of the MIPS datapath.
Consult Figure 4.17 in your textbook to see how these components will fit into your datapath design. Read
the ALU control section beginning on page 316 for insight on how your control should operate. Design and
simulate your 32-bit ALU called “alu32”. The inputs to this component are two 32-bit data words “ia” and
“ib”, one 4-bit control signal “control”, one 5-bit signal containing the shift amount “shamt”, and one 1-bit
signal containing the shift direction “shdir”. The outputs of this component are one 32-bit output word “o”,
one 1-bit carry flag “C” (only affected during add and subtract ALU operations), one 1-bit zero flag “Z”
(asserted when the output word is equal to zero), one 1-bit signed flag “S” (asserted when the 31st bit of
output word is equal to one), and one 1-bit overflow flag “V” (only affected during add and subtract ALU
operations). Your ALU needs to perform the following operations:

• the sum of “ia” and “ib” when “control” = “0010”
• the difference of “ia” and “ib” when “control” = “0110”
• the logical AND of “ia” and “ib” when “control” = “0000”
• the logical OR of “ia” and “ib” when “control” = “0001”
• the logical NOR of “ia” and “ib” when “control” = “1100”
• the slt operation of signed “ia” and “ib” when “control” = “0111”
• the slt of unsigned “ia” and “ib” when “control” = “1111”
• the logical shift of “ib”, in the direction indicated by “shdir” (‘0’ left and ‘1’ right), and by the

amount “shamt” when “control” = “0011”

The shift operation can be implemented in about 10 lines of code if you are familiar with the contents of the
ieee.std_logic_arith and ieee.std_logic_unsigned libraries. Compile, simulate, and test your design. The
alu32 section of the report should include all of the things discussed in the assignment 1 document
including a simulation trace showing the ALU’s output for each of the operations listed above.

Design and simulate the control logic for your 32-bit ALU called “alu32control”. The control unit takes as
inputs the 6-bit function field of a MIPS opcode “func” and 3 bits from the main control unit “ALUop” as
discussed in class. The output of the ALU control is the 4-bit “control” signal that is used as an input to the
ALU. Once you have created the table in section 1.2 it should be easy to implement a device that outputs
the correct ALU control signal based on the “ALUop” and “func” values listed in your table. The
alu32control section of the report should include all of the things discussed in the assignment 1 document
including a simulation trace showing the controller’s output for each entry shown in your table.

A very crucial component of your MIPS datapath will be the register file. At the end of this assignment, I
have attached an excerpt from Appendix B in your textbook that describes the register file in detail. After
reading the excerpt design, you will simulate a 32-bit register file containing 32 registers that is called
“registerFile”. The inputs to the register file are as follows. For register file reads, the signals “rr0(0:4)” and
“rr1(0:4)” specify two operand registers (i.e., those for which contents should be made available in the
outputs “q0(0:31)” and “q1(0:31)”). For register writes, the input “rw(0:4)” specifies which register should
be written with the input word “d(0:31)” on the rising edge of the signal clock “clk” and when the write-
enable signal “wr” isasserted. Make up your own test cases for simulation. Your design could reuse the
“reg32” component from assignment 2 or alternatively the following construct in VHDL:

1. type registerarray is array(X downto 0) of std_logic_vector(X downto 0);
2. signal ra: registerarray;

The first line defines new a type that is an array of std_logic_vector's; the second line initializes a signal of
type “registerarray” with name “ra”. The defined signal can be used in following manner “ra(0) <=
0xDEADBEE7”.

Section 3: Report
Each of the remaining assignments should follow the following format:

1. The report should contain the following sections
• Cover Page – with your name, date, and assignment number
• Introduction – briefly comment on the assignment and what it accomplishes
• Setup – briefly comment on the tools you used in this lab and the tutorials used to prepare you

for the work
• Design and Testing Assembler/Disassembler (programming language of choice):

o Description of the program and its function
o Well commented program code (if longer than 2 pages please attach in the appendix)
o Output of program given the lab3.txt or Lab5.mif file
o Label answers to questions asked throughout the lab document. (e.g., Question 2.2.1

in the lab document should be Answer 2.2.1 in your report)
• Design and Testing Components (VHDL):

o Description of the components and their function. If relevant, provide boolean
descriptions.

o Well commented VHDL code (if longer than 2 pages please attach in the appendix)
o Tests that were performed to verify that the components work correctly. Provide

functional simulation waveforms and make sure to describe the test they represent. In
other words: ANOTATE!

• Appendix
2. The report needs to be typed. Annotations should not be scans of hand-drawn annotations and

illegible annotations are almost as bad as no annotations.
3. Any waveform that is not labeled and annotated will not be considered as valid.
4. Make sure you use the names for inputs, outputs, and entities as outlined in the assignment. This

will be essential for connecting these components together in later assignments.

Grade Breakdown

Section Deliverables Percentage of
Total grade

Demo Demo 2 parts of the lab to the TA by the demo date (5 points each) 10%
1.1 Programming language you are using in this lab and the reason why. 3%
1.2 ISA table 4%
2.1 Program code (3%), output of program (6%), questions (6%) 15%
2.2 Program code (3%), output of program to text (6%), text to mif using

output from disassembler (2%), questions (4%)
15%

2.3 VHDL (3%), annotated simulations (7%) 10%
2.4 VHDL (3%), annotated simulations (12%) 15%
2.5 VHDL (3%), annotated simulations (12%) 15%
2.6 VHDL (3%), annotated simulations (7%) 10%
Report Report follows the format given in section 3 (2%), report is neat and

professional (1%)
3%

	

