Outline & Announcements

° Introduction to Hazards

EEL-4713C . .
Computer Architecture Forwarding
Pipelined Processor - Hazards > 1 cycle Load Delay
° 1 cycle Branch Delay
° What makes pipelining hard
EEL4713C Ann Gordon-Ross .1 EEL4713C Ann Gordon-Ross .2
Pipelining — dealing with hazards Single Memory is a Structural Hazard
° Limits to pipelining: prevent next instruction from executing Time (clock cycles)

during its designated clock cycle

: HW cannot support this combination of
instructions
: instruction depends on result of prior instruction still / ' Reg :
in the pipeline n |Load IJ
: pipelining of branches & other instructions that S i
change the PC t |Instr 1 VempT Reg A
r.
° Common solution is to the pipeline until the hazard is resolved, .
inserting one or more “ " in the pipeline o |Instr 2
r ?
d = )7
o | Instr3 15
r [l Reg
Instr 4

EEL4713C Ann Gordon-Ross .3 EEL4713C Ann Gordon-Ross .4



Option 1: Stall to resolve Memory Structural Hazard Option 2: Duplicate to Resolve Structural Hazard
* Separate Instruction Cache (Im) & Data Cache (Dm)

Time (clock cycles) Time (clock cycles)
¢ |Loaa Dtfeal D ' |Loaa Lmfieal 21l
Dlinstrr [l 2 o] Dlinstrt [ sl 2o o
r r.
o |Instr 2 Mem o |Instr 2 RS P |
r r
¢ |Instr 3(stall) @ IE Viem ¢ |Instr3 [m H{res .E
" instr 4 Mem| [ R Mem|, R "nstr 4 B Reg ?V
em eg IE' eg l‘
EEL4713C Ann Gordon-Ross .5 EEL4713C Ann Gordon-Ross .6
Data Hazard on r1 Data Hazard on r1:

* Dependencies backwards in time are hazards

Time (clock cycles)
IF ID/RF X ME?II WB
add r1,r2,r3 ; |add r1,r2,r3 IE' Dm e}
n 1
sub rd, r1,r3 o |subrari,rd [ [ 2 e
and r6, r1 ,r7 " land ré,r1,r7 B R I'?‘IV &ﬂ
O B>
or r8,r1,r9 4 lor r8,r1,r9 B B é}.{
xor r10, r1 ,r111 r |xor r10,r1,r11 '

EEL4713C Ann Gordon-Ross .7 EEL4713C Ann Gordon-Ross .8




Option1: HW Stalls to Resolve Data Hazard

Time (clock cycles)

I

n

j subr4, r1,r3
' and r6,r1,r7
(@)

4 lor r8,r1,r9
' xor r10,r1,r11

EEL4713C Ann Gordon-Ross .9

IF
add r1,r2,r3 [ n [{re]

Im i‘ bubble

Option 1: HW stalls pipeline

bubble \bubble |

=]

E

=~
[£]

G

=
3

« HW doesn’ t change PC => keeps fetching same instruction
& sets control signals to benign values (0)

Time (clock cycles)

/

n

j stall

r.
stall

(0]

r

d | stall

° |subrd,r1,r3
and r6,r1,r7

EEL4713C Ann Gordon-Ross .11

[

ID/RF

IF
add r1,r2,r3 [ m [{re]

X

bubble

[}

bubble

bubble Sbubble bubble

Ybubble Sbubble bubble
bubble bubble bubble

But recall how the control logic works

° The Main Control generates the control signals during Reg/Dec
+ Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
» Control signals for Mem (MemWr Branch) are used 2 cycles later
» Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

1 1 1 1
p i Reg/Dec ' Exec | i Mem 1 i Wr
1 1 | [
ey o (& Exop Y ey
ALUSrc ALUSrc -
— ALUOp = | ALUOp <8 §
S Main SH———— |2 3
S 1 RegDst =1 | RegDst e
Control > = E
g = = =
K MemWr 3 MemWr 2 MemWr E
23 Branch @ Branch % | Branch s,
: - g z
MemtoReg MemtoReg MemtoReg = | MemtoReg
RegWr RegWr RegWr RegWr

EEL4713C Ann Gordon-Ross .10

Option 2: SW inserts independent instructions

* Worst case inserts NOP instructions

Time (clock cycles)

/

n

7 | nop

r.

o | mop

;

d | nop

° |subrd,r1,r3
and r6,r1,r7

EEL4713C Ann Gordon-Ross .12

IF
add r1,r2,r3 [ m [{re]

ID/RF

H

=
o
[

N

H




Option 3 Insight: Data is available! HW Change for “Forwarding” (Bypassing):

* Pipeline registers already contain needed data + Increase multiplexers to add paths from pipeline registers

Key enabler: Reg file written at .
beginning of cycle, read at end

Time (clock cycles)
IF IDIR'- MEM WB ID/EX EX/MEM MEM/WE
[
 |add r1,r2,r3 [ m ]l Eyion jrffs
n *zeror]
° |subrd,r1,r3 [ | e o} Jr{Res] B
f- > ATy I
and r6,r1,r7 c—r ; |
0 3
r R ; R 1
! lor 80 [ el P o e
e R R
| 3 €
r |xorr10,r1,r11 [ e i '
EEL4713C Ann Gordon-Ross .13 EEL4713C Ann Gordon-Ross .14
Load delays Forwarding reduces Data Hazard to 1 cycle:
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
Clock
10: Loadl Ifetch IReg/Decl Exec I Mem I Wr_ | I Time (CIOCk cycles)
| I I l I | IF_: ID/IRF MEM WB
Plus 1 | Ifetch | Reg/Dec] Exec [ Mem Wr [
; - ) (w1, 002) [m el Ehrlom o ffte
Plus2| Ifetch IReg/Decl Exec l Mem I Wr I n
Plus3| Ifetch IReg/Deql Exec I Mem I Wr I ‘? SUb r4,ﬂ,r6 E % T}
Plus4| Ifetch l‘leg/Decl Exec I Mem I ‘Wr I r. Rl >' Re
v and r6,r1,r7 g cgr
° Although Load is fetched during Cycle 1: @)
. i r R 3 R
Data loaded from memory in cycle 4 4 |or I'8, ,I'9 B €g ?, .r
* The data is NOT written into the Reg File until Cycle 5 e I‘
* We cannot read this value from the Reg File until Cycle 5 r
+ 2-instruction delay before the load take effect

EEL4713C Ann Gordon-Ross .15 EEL4713C Ann Gordon-Ross .16



Option1: HW Stalls to Resolve Data Hazard Option 2: SW inserts independent instructions

*Check for hazard & stalls * Worst case inserts NOP instructions
Time (clock cycles) Time (clock cycles)
IF \ IF ID/RF NEX MEM WB
 wrt,0e2) [l Eon  wet,or2) [l 2o
n 1 N n
? stall Im }:@_bubbkl@@/ ubble ? nop Im | Reg Dm k
r. 11EN ; r <D
_ lsubr4,r1,r3 EJEIE} Res _ subr4,1,r3 @ﬂi}ﬂ
r H r H
¢ |and r6,r1,r7 m i" Reg Ree ¢ |and r6,r1,r7 m i" Reg Reg
e e
" Jor r8,r1,r9 tm R ?' P R " Jor r8,r1,r9 m i“
EEL4713C Ann Gordon-Ross .17 EEL4713C Ann Gordon-Ross .18
*Software Scheduling to Avoid Load Hazards *Software Scheduling to Avoid Load Hazards
Try producing fast code for Try producing fast code for
a=b+c; a=b+c;
d=e-f; d=e-f;
assuming a, b, ¢, d ,e, and f assuming a, b, ¢, d ,e, and f
in memory. in memory.
Slow code: Slow code:
Lw Rb,b Lw Rb,b
Lw Rc,c Lw Rc,c stall
ADD Ra,Rb,Rc ADD Ra,Rb,Rc
SWwW a,Ra SW a,Ra
Lw Re,e Lw Re,e
Lw Rf,f Lw Rf,f
SUB Rd,R stall
,Re,Rf SUB Rd,Re,Rf
Sw d,Rd Sw d,Rd

EEL4713C Ann Gordon-Ross .19 EEL4713C Ann Gordon-Ross .20



Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f;
assuming a, b, ¢, d ,e, and f
in memory.
Slow code:
LW  Rbb Fast code:
Lw Rb,b
Lw Rc,c LW Re.c
ADD Ra,Rb,Rc LW Re.e
SW aRa ADD  Ra,Rb,Rc
LW Re,e LW Rf.f
LW Rf,f sSw a,Ra
SUB Rd,Re,Rf SUB  Rd,Re,Rf
sSwW d,Rd SwW d,Rd

EEL4713C Ann Gordon-Ross .21

Branch delay
! Cycle 4] Cycle5 | Cycle 6 Cycle 7 i Cycle 8 i Cycle 9 i Cycle 10} Cycle 11

12: Beql Ifetch lReg/Decl Exec I Mem,l Wr I
(target is 1000) : \ )
16: R-typnl Ifetch l‘.Beg/Decl Exec I Mem I Wr I

20: R-typel‘lfetch lReg/De(l Exec I Mem I Wr I

24: R-typel Ifetch ng/Decl Exec I Mem I Wr I

1000: Target of Br \yvlfetch IReg/Decl Exec I Mem I Wr

° Although Beq is fetched during Cycle 4:
» Target address is NOT written into the PC until the end of Cycle 7
 Branch’s target is NOT fetched until Cycle 8
» 3-instruction delay before the branch take effect

EEL4713C Ann Gordon-Ross .23

o

o

o

o

Compiler Avoiding Load Stalls:

B scheduled

B unscheduled

gcc
spice

tex

25%

65%

0%

EEL4713C Ann Gordon-Ross .22

Branch Stall |

20%

40%

60%

% loads stalling pipeline

mpact

If CPI =1, 30% branch, Stall 3 cycles => new CPI =1.9!

2 part solution:

« Determine branch taken or not sooner, AND

» Compute taken branch address earlier

MIPS branch tests

Solution Option 1:

* Move Zero test to ID/RF stage
* Adder to calculate new PC in ID/RF stage
* 1 clock cycle penalty for branch vs. 3

EEL4713C Ann Gordon-Ross .24

=0or!=0

80%



Option 1: move HW forward to reduce branch delay Option 2: Define Branch as Delayed

Instruction | Instr. Decode Execute | Memory Write ° ; : :
; i ; ; A h th f th
Fetch Reg. Fetch Addr. Calc Access Back o ga?q ::msgrl:lt%tg:::es after branch that need to execute independent of the
Next PC ) : * Worst case, SW inserts NOP into branch delay

° Where to get instructions to fill branch delay slot?
» Before branch instruction
* From the target address: only valuable when branch
« From fall through: only valuable when don’ t branch

° Compiler effectiveness for single branch delay slot:
* Profiling: about 50% of slots usefully filled

EEL4713C Ann Gordon-Ross .25 25 EEL4713C Ann Gordon-Ross .26

Example Branch prediction

° Add r1,r2,r3 ° Aggressive pipelined processors:

. * Place branch resolution as early as possible in pipeline
° Beq r2, r4, target w Branch not depending on add, so swa
q g P g P * Beyond that, use branch prediction and speculation

° Next
° Simple branch prediction:
» Assume branch not taken, fetch from fall-through
« If branch is taken, flush pipeline
° Target: x ° More complex techniques are often used:

 Predict taken or not taken based on learning of past behavior of a
branch

- Keep counters indexed by PC on a “branch predictor table”
» Predict target address before it is calculated
- Branch target table, also indexed by PC

EEL4713C Ann Gordon-Ross .27 EEL4713C Ann Gordon-Ross .28



Branch prediction Summary — 5-stage pipeline revisited

° Speculative execution: ° Pipeline registers
* Trust, but verify - Data and control signals propagate every cycle
« Assume branch prediction is correct, have mechanisms to detect

otherwise and flush pipeline before any damage to architectural ° Hazard detection logic and forwarding for data hazards
state is done (i.e. registers or memory get corrupted) « 1 cycle load delay slot, R-type has zero delay

° Move branch resolution to ID stage to reduce delay to 1 cycle

° Example: use the PC to look up a branch predictor table and a branch
target table
« If there is a matching entry for the PC, chances are it is a branch,
and chances are the direction (taken/not taken) and target match
the prediction

* Go ahead and set the next PC to be the predicted one

 Later on in the pipeline, once the branch is resolved (is it a branch?
Condition satisfied? What is the target?), either let the instructions
that follow it commit, or discard them

EEL4713C Ann Gordon-Ross .29 EEL4713C Ann Gordon-Ross .30

5-stage pipeline revisited 5-stage pipeline revisited Hazard detection:
Load? Rt(load) = Rs,Rt(next)?

Hazard Yes: stall PC, IF/ID, insert bubble

detection

MEMWB MEMWB
e kel kel
: g W Hefal d ha
e || |8 = || |8
memory memary
Register Register
. Comparison . Comparison
Forwarding logic Forwarding logic
muxes muxes

EEL4713C Ann Gordon-Ross .31 EEL4713C Ann Gordon-Ross .32



5-stage pipeline revisited ID/EX.MemRead==1 and
(ID/EX.Rt==IF/ID.Rs) or

(ID/EX.Rt==IF/ID.Rt))

/ ' Clear control
r)‘/ Signals for EX, M, WB
g ST i
Ut ¥ hing MEMWE
| ; o -
’:.;7- H - )
- memoary
L] IO Ragtte e -—’__I
Disable writing
PC, ,IFtIID Register
register ) Comparison
Forwarding logic
muxes
EEL4713C Ann Gordon-Ross .33
5-stage pipeline revisited Hazard detection:
Is it a branch? Taken?
— Yes: flush IF/ID register (force nop)
! DEX
fo

.v_-——l:mﬂ
uft-{n hing MEMWE
x

st | =5

. s

™ L)
u

x

Duin )

e
IO Ragtatur e p—
Ll . _-I

Register
Comparison

Forwarding logic

muxes
EEL4713C Ann Gordon-Ross .35

5-stage pipeline revisited

Hazard
b— S > detection
£ . oEx
I#D "y 15 -y L
Pegisters ~\
, g il
o
1NV Ragtatar e
WB=1? Destination reg
Forwarding (rt for loads, rd otherwise)
muxes matches rs or rt of next inst?
EEL4713C Ann Gordon-Ross .34 Matches second next?

Examples of other hazards

° “Read-after-write” (RAW)
* Load followed by ALU instruction using same register
» Register read must occur after load writes it

° “Write-after-write” (WAW)
« div.d $f0,$f2,$f4
+ add.d $f0,$f6,$f8
- add.d’ s write must occue after div.d’s

° “Write-after-read” (WAR)
« div.d $f0,$f2,$f4
- add.d $f2,$f4,$f6
- add.d’ s write must occur after div.d’ s read

EEL4713C Ann Gordon-Ross .36



When is pipelining hard? When is pipelining hard?

: 5 instructions executing in 5 stage pipeline

* How to stop the pipeline?
P PP ° Address modes: Autoincrement causes register change during

* Restart? instruction execution
* Who caused the interrupt? + Now worry about write hazards since write no longer last stage
Stage  Problem interi " upts oceurfing - Write After Read (WAR): Write occurs before independent read
IF Page fa_ult on |nstruct|on_ fetch;lm!sallgned memory - Write After Write (WAW): Writes occur in wrong order, leaving
acces.s, memt.)ry-protectlon violation wrong result in registers
ID Undefined or illegal opcode - (Previous data hazard called RAW, for Read After Write)
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory ° Memory-memory Move instructions
access; memory-protection violation « Multiple page faults
EEL4713C Ann Gordon-Ross .37 EEL4713C Ann Gordon-Ross .38
When is pipelining hard? First Generation RISC Pipelines (“Scalar”)
: long execution time
° Also, may pipeline FP execution unit so that can initiate new ° All instructions follow same pipeline order (“static schedule”).
instructions without waiting for full latency o . L
P Instruct Lat MIPS R4000 Register write in last stage
nstruction atency ( ) — Avoid WAW hazards
Add, Subtract 4 i L .
Multiply 8 ° All register reads performed in first stage after issue.
Divide 36 . — Avoid WAR ha-zards
Square root 112 Memo.ry access in stage 4
Negate 2 — Avoid all memory hazards
Absolute value 2 ° Control hazards resolved by delayed branch (with fast path)
FP compare 3 ° RAW hazards resolved by bypass, except on load results
° Divide, Square Root take -10X to -30X longer than Add which are resolved by delayed load.
* Exceptions?
+ Adds WAR and WAW hazards since pipelines are no longer Substantial pipelining with very little cost or complexity.
same length Machine organization is (slightly) exposed!

EEL4713C Ann Gordon-Ross .39 EEL4713C Ann Gordon-Ross .40



Examples

° Alpha 21064 (92):

* up to two instructions per cycle
* One floating-point, one integer (in-order)

« 7 stages (int), 10 stages (FP)
° MIPS R3000 (88)

* One (integer) instruction per cycle

» 5 stages (int)

¢ Sparc Micro (91)
» 5 stages

EEL4713C Ann Gordon-Ross .41

Examples

° Alpha 21264 (98)
 up to 4 instructions per cycle
» 7 stages (int), 10 stages (FP)

° MIPS R10000 (96)
* 4 instruction per cycle
» 5 stages (int), 10 stages (FP)

° Sparc Ultra Il (96)
» 9 stages (int, FP)

4 instructions issued per cycle

EEL4713C Ann Gordon-Ross .43

Today’ s RISC Pipelines (“Superscalar”)

° Instructions can be issued out of order in pipeline (“dynamic schedule”)

— Must handle WAW, WAR hazards in addition to RAW
— Tomasulo, Scoreboarding techniques
° Multiple instructions issued in a single cycle
« Instructions are “queued up” for execution in a reorder buffer
» CPleffective < 1!
° Control hazards resolved (speculatively) by predicting branches
° Single-cycle memory access in best case (cache hit)
Tens-hundreds if need to go to main memory

° Aggressive pipelining with rapidly increasing cost/complexity.

° Diminishing returns as more resources are added

EEL4713C Ann Gordon-Ross .42

NetBurst

o

Successor to Pentium Pro
* 3 uops per cycle, out-of-order

o

Key differences
« Deeper pipeline for fast clocks: 20 stages
« Seven integer execution units vs. 5
« Can overlap instructions from two programs in the pipeline
- “Hyper-threading”; simultaneous multi-threading
- To software, looks as if it has 2 processors

EEL4713C Ann Gordon-Ross .44



Review: Summary of Pipelining Basics

° Speed Up proportional to pipeline depth; if ideal CPl is 1, then:

Pipeline depth . Clock cycle unpipeline
stall cycles per instructionClock cycle pipelined

Speechp_1+Pipeline
° Hazards limit performance on computers:
« structural: need more HW resources
» data: need forwarding, compiler scheduling
» control: early evaluation & PC, delayed branch, prediction
° Increasing length of pipe increases impact of hazards since pipelining
helps instruction bandwidth, not latency
° Compilers key to reducing cost of data and control hazards
* load delay slots
» branch delay slots

° Exceptions, Instruction Set, FP makes pipelining harder

EEL4713C Ann Gordon-Ross .45



