EEL-4713C
Computer Architecture
Instruction Set Architectures

EEL-4713C - Ann Gordon-Ross

Abstraction layers

l User

High-level language (e.g. C++, Java)

Low-level language (Assembly)

Register-level transfer (Datapath)

Basic logic gates (AND, OR)

Devices (CMOS transistors)

EEL-4713C - Ann Gordon-Ross

Software

Hardware

Outline

 Instruction set architectures
» The MIPS instruction set

— Operands and operations
— Control flow
— Memory addressing
— Procedures and register conventions
— Pseudo-instructions
* Reading:
— Textbook, Chapter 2
— Sections 2.1-2.8, 2.10-2.13, 2.17-2.20

EEL-4713C - Ann Gordon-Ross

Introduction to Instruction Sets

« Instructions: words of computer hardware’ s
language
— Instruction sets: vocabulary
— What is available for software to program a computer

* Many sets exist; core functionality is similar
— Support for arithmetic/logic operations, data flow and control

* We will focus on the MIPS set in class
— Simple to learn and to implement
— Hardware perspective will be the topic of Chapter 5

— Current focus will be on software, more specifically instructions
that result from compiling programs written in the C language

EEL-4713C - Ann Gordon-Ross

Stored-program concept Stored-program execution flow

Instruction Obtain instruction from program storage
. TP P | - Moy . Fetch
+ Treat instructions as data Accounting peogram |
— Same technology used for both _ (machine code) | Instruction Determine required actions and instruction size
Editor program Decode
(machine code)]
C compiler Operand Locate and obtain operand data
Processor (machine code) Fetch
______________ i
Pl ol Compute result value or status
Book fext
______________ Result Deposit results in storage for later use
Source code in C Store
for editor program l
Next Determine successor instruction
Instruction
L —
EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross
Basic issues and outline What operations are supported?

* What operations are supported?
— What operands do they use?

“Classic” instruction sets:

 Typical “integer” arithmetic and logic functions:

— Addition, subtraction
* How are instructions represented in memory? — Division, multiplication

— AND, OR, NOT, ...

Floating-point operations
— Add, sub, mult, div, square root, exponential, ...

How are data elements represented in memory?

How is memory referenced?

More recent add-ons:
— Multi-media, 3D operations

How to determine the next instruction in sequence?

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

MIPS operations Memory Layout and Instruction Addressing

* In the MIPS architecture, memory is essentially an

array of 8-bit bytes — thus the memory is byte
+ See MIPS reference chart (green page of textbook) addryessablé....y " ryis by

for full set of operations

* Most common: addition and subtraction pC M[o]
°°~;\°° mil o ...but 1 instruction is 32-bits = 1 word
+ MIPS assembly: add rd, rs, rt ,\\&“ mi} * PC is a special register that points to

PC [.5i5=1bye | M[4] the current instruction being fetched
8-bits = 1 byte | M[5]

sbis=Toyie | M[6] Incrementing the PC (i.e., PC ++)
abits = 1byte | M[7] actually moves PC ahead 4 memory
addresses -> PC=PC + 4

— register rd holds the sum of values currently in registers rs and rt

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

Memory Layout and Data Addressing Operands

+ Data is typically 1 word (32 bits), but some data is
smaller (i.e., ASCII characters are 8 bits), thus the

memory must be byte addressable * In MIPS, operands for arithmetic and logic operations

always come from registers

* Assun_]e we have an array of 2 words in high level — Other sets (e.g. Intel IA-32/x86) support memory operands
code (i.e., int A[2]) * Registers: fast memory within the processor
datapath
Al0] mio] (0x00) « The base address of the array is 0x00 _ Goal is to be accessible within a clock cycle
o |mmowzy * A[0]is at 0x00; A[1] is at 0x04 _ How many?
A1) mi} gg:gi; * To access A[1] in assembly code, you » Smaller is faster — typically only a few registers are available
. |msjoxosy have to know the base address of A » MIPS: 32 registers
A Imiel0x08) (0x00) and the offset into the array, — How wide?
MI1O07) - which is 1 word (in high level code), » 32-bit and 64-bit now common
but 4 memory locations, thus the » Evolved from 4-bit, 8-bit, 16-bit
address of A[1] is: » MIPS: both 32-bit and 64-bit. We will only study 32-bit.

base + 4(offset) = 0x00 + 4(1) = 0x04

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

Example Operands (cont)

f = (g+h) — (i+j); * Operands need to be transferred from registers to
memory (and vice versa)
add $t0,$s1,$s2 # $t0 holds g+h + Data transfer instructions:
.. — Load: transfer from memory to register
add $t1’$S3’$S4 # $t1 holds I+ — Store: transfer from register to memory
sub $s0,$t0,$t1 # $s0 holds f — What to transfer?

» 32-bit integer? 8-bit ASCII character?
» MIPS: 32-bit, 16-bit and 8-bit
— From where in memory?
» MIPS: 32-bit address needs to be provided
(assume f=$s0, g=$s1, h=$s2, i=$s3, j=$s4) » addressing modes
— Which register?
» MIPS: one out of 32 registers needs to be provided

Example Immediate operands
A[12] = h + A[8]; « Constants are commonly used in programming
— E.g. 0 (false), 1 (true)
Iw $t0,32($s3) # $t0: A[8] (32=8*4bytes) * Immediate operands:
add $t0,$s2,$t0 # $t0 = h+A[8] — Which instructions need immediate operands?

» Loads and stores
» Jumps (will see later)
— Width of immediate operand?
» In practice, most constants are small

(assume A is an array of 32-bit/4-Byte integer elements. » MIPS: pack 16-bit immediate in instruction code
Base address of array A is $s3. h=$s2)

« Example: addi $s3, $s3, 4

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

Instruction representations MIPS instruction encoding fields

‘ op rs rt rd shamt funct

Stored program: instructions are in memory
* Must be represented with some binary encoding

+ Assembly language

— mnemonics used to facilitate people to “read the code”

— E.g. MIPS add $t0,$s1,$s2
Machine language

— Binary representation of instructions

— E.g. MIPS 00000010001100100100000000100000
Instruction format

— Form of representation of an instruction

— E.g. MIPS 00000010001100100100000000100000

» Red: “add” code; brown: “$s2”

op (6 bits): basic operation; “opcode”

rs (5 bits): first register source operand

rt (5 bits): second register source operand
rd (5 bits): register destination

shamt (5 bits): shift amount for binary shift
instructions

funct (6 bits): function code; select which variant of
the “op” field is used. “function code”

L[] ”
R-type
— Two other types: I-type, J-type; will see later

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

Logical operations Decision-making: control flow
+ Bit-wise operations; packing and unpacking of bits * A microprocessor fetches an instruction from
into words memory address pointed by a register (PC)
+ MIPS: * The PC is implicitly incremented to point to the next
— Shift left/right memory address in sequence after an instruction is
» E.g. sll $s1,$52,10 fetched

— Bit-wise AND, OR, NOT, NOR
» E.g. and $s1,$s2,$s3

— Immediate AND, OR
» E.g. andi $s1,$s2,100

Software requires more than this:
— Comparisons; if-then-else
— Loops; while, for
Instructions are required to change the value of PC

. from the implicit next-instruction
» What does andi $s1,$s1,0 do? _ Conditional branches

— Unconditional branches

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

MIPS control flow Example: if/then/else

» Conditional branches: if (i==j) f = g+h; else f=g-h;
— beq $s0,$s1,L1
» Go to statement labeled L1 if $s0 equal to $s1

— bne $s0,$s1,L1 bne $s3,$s4,Else # go to else if i!=j
» Go to statement labeled L1 if $s0 not equal to $s1 add $s0,$s1,$s2 # f=g+h
j Exit
* Unconditional branches: Else: sub $s0,$s1,$s2
-JL2

Exit:

» Go to statement labeled L2

($s3=i, $s4=j, $s1=g, $s2=h, $s0=f)

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross
Example: while loop MIPS control flow
While (save[i]==k) i=i+1; * Important note:
— MIPS register $zero is not an ordinary register
LOOp: sl $t1,$s3,2 # $t1 holds 4*i » It has a fixed value of zero
. - A ial to facilitate deali ith th lue, which i

add $t1,5t1,$s6 # $t1:addr of save][i] COsrrFl,r?l%zl;isdeoina::;cztlige ealing with the zero value, which is
Iw $t0,0($t1) # $t0: save]i]
bne $t0,$s5,Exit # not equal? end + E.g. MIPS does not have a branch-if-less-than
addi $s3,$s3,1 # increment | — Can construct it using set-less-than (slt) and register $zero:
j Loop # loop back — E.g.: branch if $s3 less than $s2

Exit: » slt $t0,$s3,$s2 # $t0=1 if $s3<$s2

» bne $t0,$zero,target # branch if $t0 not equal to zero

($s3=i, $s5=k, $s6 base address of save[])

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

MIPS control flow: supporting procedures

* Instruction “jump-and-link” (jal JumpAddr)
— Jump to 26-bit immediate address JumpAddr
» Used when calling a subroutine
— Set R31 ($ra) to PC+4
» Save return address (next instruction after procedure call) in a
specific register
* Instruction “jump register” (jr $rx)
— Jump to address stored in address $rx
— jr $ra: return from subroutine

EEL-4713C - Ann Gordon-Ross

Procedure calls and stacks

Stacking of Subroutine Calls & Returns and Environments:

A:y A
CALLB o
B:[— _.|A|B

CALLC
c: | — —|A|B|C
RET
p— AlB
RET
| — A

Some machines provide a memory stack as part of the architecture
(e.g., VAX)

Sometimes stacks are implemented via software convention
(e.g., MIPS)

EEL-4713C - Ann Gordon-Ross

Support for procedures

* Handling arguments and return values
— $a0-$a3: registers used to pass parameters to subroutine
— $v0-$v1: registers used to return values
— Software convention — these are general-purpose registers

* How to deal with registers that procedure body
needs to use, but caller does not expect to be
modified?

— E.g. in nested/recursive subroutines

» Memory “stacks”

— Placeholder for register values that need to be preserved during
procedure call

EEL-4713C - Ann Gordon-Ross

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

Next inf. Big 0 Little
Empty?
o | grows grows Memory
c up down Addresses
Last b
[SP| Fun? a
0 Little inf. Big

Little --> Big/Last Full Little --> Big/Next Empty

POP: Read from Mem(SP) POP: Decrement SP
Decrement SP Read from Mem(SP)

PUSH: Increment SP PUSH: Write to Mem(SP)
Write to Mem(SP) Increment SP

EEL-4713C - Ann Gordon-Ross

Call-Return Linkage: Stack Frames
E! High Mem

ARGS

— Reference args and
local variables at

fixed offset
Callee Save from FP
Registers
(old FP, RA)

Local Variables

\ Grows and shrinks during
/ expression evaluation

[se]

SP may change during the procedure; FP provides
a stable reference to local variables, arguments

Low Mem

EEL-4713C - Ann Gordon-Ross

Example in C: swap

swap(int v[], int k)
{
int temp;
temp = v[k];
VvIk] = v[k+1];
v[k+1] = temp;

EEL-4713C - Ann Gordon-Ross

MIPS: Software conventions for Registers

0 zero constant 0 16
1 at reserved for assembler
2 v0 expression evaluation & 23
3 v1 function results 24
4 a0 arguments 25
5 a1 26 kO reserved for OS kernel
6 a2 27 k1
7 a3 28 gp Pointer to global area
8 29 sp Stack pointer
30 fp frame pointer
15 31:ra::Return Address:(HW) |

See Figure 2.18.

EEL-4713C - Ann Gordon-Ross

swap: MIPS

Using saved registers ($a0=v[], $a1=k):
swap:

addi
sw
sw

addi
jréra

$sp,$sp,-12 ; room for 3 words

$s0,8($sp)
$s1,4($sp)
$s2,0($sp)
$s1, $a1,2
$s1, $a0,$s1
$s0, 0($s1)
$s2, 4($s1)
$s2, 0($s1)
$s0, 4($s1)
$s0,8($sp)
$s1,4($sp)
$s2,0($sp)

$sp,$sp,12 ; restore stack pointer

; return

EEL-4713C - Ann Gordon-Ross

; multiply k by 4
; address of v[k]

; load v[k]
; load v[k+1]

swap(int v[], int k)

int temp;
temp = v[k];
V[k] = v[k+1];
v[k+1] = temp;

; store v[k+1] into v[k]
; store old v[k] into v[k+1]

to caller

swap: MIPS swap(int v[], int k)

Using temporaries ($a0=v[], $a1=k) {
int temp;

swap: temp = v[K];
sl $t1, $a1,2 ; multiply k by 4 v[K] = v[k+1];
addu $t1, $a0,$t1 ; address of v[k] _]
Iw $t0, 0($t1) : load V[K] vk+1] = temp;
Iw $t2, 4($t1) ; load v[k+1] }
sw $t2, 0($t1) ; store v[k+1] into v[k]
sw $t0, 4($t1) ; store old v[k] into v[k+1]
jréra ; return to caller

EEL-4713C - Ann Gordon-Ross

MIPS Addressing: 32-bit constants

« All MIPS instructions are 32-bit long
— Reason: simpler, faster hardware design: instruction fetch, decode,
cache
* However, often 32-bit immediates are needed
— For constants and addresses

* Loading a 32-bit constant to register takes 2
operations
— Load upper (a.k.a. most-significant, MSB) 16 bits (“lui” instruction)
» Also fills lower 16 bits with zeroes
» lui $s0,0x40 results in $s0=0x4000
— Load lower 16 bits (“ori” instruction, or immediate)
» e.g. ori $s0,$s0,0x80 following lui above results in $s0=0x4080

EEL-4713C - Ann Gordon-Ross

MIPS Addressing modes

I-type R-type J-type

Common modes that 1. Immediate add
compilers generate are [op [[t [immedie
supported:
— Immediate ?:_ﬁ?@f".“i’.‘.’.‘?‘,’_’ff’f’,'??_(1
» 16 bits, in inst [sp[w] [wa]... o Roglsters
) — ist
— Register .
» 32-bit register contents 8. B adieming L
_ Base ep | Address | Meamory
» Register + constant offset; [Register | (‘:’:;. ~ | By | Hetword| Word
8-, 16- or 32-bit data in > g
memory
— PC-relative 4P reiive adress g
» PC+constant offset CIATAE] =Mooy
— Pseudo-direct \ D Word
» 26-bit immediate, shifted 1
left 2x and concatenated to
the 4 MSB bits of the PC =~ - oo
op l Address j Memory
.
5 4
\ PC |CF—+ viord

EEL-4713C - Ann Gordon-Ross

MIPS Addressing: targets of jumps/branches

» Conditional branches:
— 16-bit displacement relative to current PC
» I-type instruction, see reference chart
— “Back” and “forth” jumps supported
» Signed displacement; positive and negative
— “Short” conditional branches suffice most of the time
» E.g. small loops (back); if/then/else (forward)
* Jumps:
— For “far” locations
— 26-bit immediate, J-type instruction
— Shifted left by two (word-aligned) -> 28 bits
— Concatenate 4 MSB from PC -> 32 bits

EEL-4713C - Ann Gordon-Ross

Instructions for synchronization

* Multiple cores, multiple threads

» Synchronization is necessary to impose ordering
— E.g.: a group working on a shared document
— Two concurrent computations where there is a dependence
» A=(B+C)*(D+E)

» The additions can occur concurrently, but the multiplication
waits for both

* Proper instruction set design can help support
efficient synchronization primitives

EEL-4713C - Ann Gordon-Ross

MIPS synchronization primitives

- Load linked (I)

— Load a value from memory to a register, like a regular load

— But, in addition, hardware keeps track of the address from which it
was loaded

+ Store conditional (sc)

— Store a value from register to memory succeeds *only if* no
updates to load linked address

— Register value also change: 0 if store failed, 1 if succeeded

EEL-4713C - Ann Gordon-Ross

Synchronization primitives

+ Typically multiple cores share a single logical main
memory, but each has its own register set
— Or multiple processes in a single core

« “Locks” are basic synchronization primitives
— Only one process “gets” a lock at a time

+ Key insight: “atomic” read/write on memory location
can be used to create locks

— Goal: nothing can interpose between read/write to memory location
— Cannot be achieved simply using regular loads and stores — why?

+ Different possible approaches to supporting
primitives in the ISA
— Involving moving data between registers and memory

EEL-4713C - Ann Gordon-Ross

Example

Goal: build simple “lock”
— Value “0” indicates it is free
— Value “1” indicates it is not available

— E.g. if a group is collaborating on the same document, an individual
may only make changes if it successfully gets lock=0

 Primitive: atomic exchange $s4 and 0($s1)
- &tt?;npt to acquire a lock: exchange “1” ($s4) with mem location 0
s

* Try: add $t0, $zero, $s4 - $t0 gets $s4

. Il $t1, 0($s1) - load-linked lock addr
. sc $t0, 0($s1) - conditional store “1”
. beq $t0,$zero,try - if failed, $t0=0; retry

. add $s4, $zero, $s1 - success: copy to $s4

EEL-4713C - Ann Gordon-Ross

Compiler, assembler, linker

* From high-level languages to machine executable program

C program ove program Java program
‘\'l'l.’wl-
[cenpn] [(ctass s dava tytacodes) | | dava Litrary rouines (machine lnguage) |
S y,
N B "'7“‘"‘ Java Virtual Maching
i’Asaemﬁy language program Ll R /

.

z - ‘ Compiled Java methods (maching language) ‘

Object: Maching language medule | [Object: Linrary routine (machine larguage) |
e

Linker
~

.
Execulsble: Maching langusge program |

LY
Loade

=

EEL-4713C - Ann Gordon-Ross

Assembler

* Translates assembly-level program into machine-
level code

— “Object” files (.0)

« Supports instructions of the processor’ s ISA, as well
as “pseudo-instructions” that facilitate programming
and code generation

— Example: move $t0,$t1 a pseudo-instruction for add $t0,$zero,$t1
» Makes it more readable

— Other examples: branch on less than (blt), load 32-bit immediate
» “unfold” pseudo-instruction into more than 1 real instruction

— Cost: one register ($at) reserved to assembler, by convention

EEL-4713C - Ann Gordon-Ross

Compiler

» Translates high-level language program (source
code) into assembly-level
— E.g. MIPS assembly; Java bytecodes

» Functionality: check syntax, produce correct code,
perform optimizations (speed, code size)
— See 2.11 for more details

EEL-4713C - Ann Gordon-Ross

Linker

+ Large programs can generate large object files

Multiple developers may be working on various
modules of a program concurrently

— Sensible to partition source code across multiple files
In addition, many commonly used functions are
available in libraries

— E.g. disk I/O, printf, network sockets, ...
Linker: takes multiple independent object files and
composes an “executable file”

EEL-4713C - Ann Gordon-Ross

Loader Miscellaneous MIPS instructions

* Break
o Brings executable file from disk to memory for — A breakpoint trap occurs, transfers control to exception handler
execution + Syscall
— Allocates memory for text and data — A system trap occurs, transfers control to exception handler
— Copies instructions and input parameters to memory * coprocessor instructions
— Initializes registers & stack — Support for floating point: discussed later
— Jumps to start routine (C’ s “main()”) * TLB instructions
. Dynamically-linked libraries — Support for virtual memory: discussed later

T “ ” . * restore from exception
~ Link libraries to executables, “on-demand”, after being loaded — Restores previous interrupt mask & kernel/user mode bits into status

— Often the choice for functions common to many applications register

— Why? * load word left/right

» Reduce size of executable files — disk & memory space saved — Supports misaligned word loads
» Many executables can share these libraries + store word left/right
— .DLL in Windows, .so (shared-objects) in Linux — Supports misaligned word stores
EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross
Details of the MIPS instruction set Reduced and Complex Instruction Sets

* Register zero always has the value zero (even if you try to write it)
* Jump and link instruction puts the return address PC+4 into the

link register . .
 regrstel , L . * MIPS is one example of a RISC-style architecture
» All instructions change all 32 bits of the destination register Reduced Instruction Set C ¢
(including lui, Ib, Ih) and all read all 32 bits of sources (add, sub, — Reduced Instruction Set Lomputer
and, or, ...) — Designed from scratch in the 80’ s
« Immediate arithmetic and logical instructions are extended as « Intel’ s “IA-32” architecture (x86) is one example of a
follows: CISC architecture

— logical immediates are zero extended to 32 bits
— arithmetic immediates are sign extended to 32 bits

* The data loaded by the instructions Ib and Ih are extended as
follows:

— lbu, Ihu are zero extended
—Ib, Ih are sign extended

» Overflow can occur in these arithmetic and logical instructions:
— add, sub, addi

— it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult,
multu, div, divu

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

— Complex Instruction Set
— Has been evolving over almost 30 years

x86 Some history

1978: 8086 launched; 16-bit wide registers; assembly-
compatible with 8-bit 8080

+ Example of a CISC ISA 1982: 80286 extends address space to 24 bits (16MB)

— P6 microarchitecture and subsequent implementations use RISC micro- - 1985: 80386 extends address space and registers to 32 bits
operations : \ :
(4GB); paging and protection for O/Ss

* Descended from 8086 _ 1989-95: 80486, Pentium, Pentium Pro; only 4 instructions
* Most widely used general purpose processor family added; RISC-like pipeline

— Steadily gaining ground in high-end systems; 64-bit extensions now from 1997-2001: MMX extensions (57 instructions) SSE extensions
-)

AMD and Intel
andme (70 instructions), SSE-2 extensions; 4 32-bit floating-point

operations in a cycle

* 2003: AMD extends ISA to support 64-bit addressing, widens
registers to 64-bit.

* 2004: Intel supports 64-bit, relabeled EM64T

* Ongoing: Intel, AMD extend ISA to support virtual machines
(Intel VT, AMD Pacifica). Dual-core microprocessors.

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross
x86 Registers X86 operations

Destination for operations can be register or memory
» Source can be register, memory or immediate

16-bit segment registers
32-bit General purpose registers CS, DS, SS, ES, FS, GS « Data movement: move, push, pop

EAX, EBX, ECX, EDX, .
ALU operations

EBP, ESI, EDI, ESP
Special uses for certain instructions Control flow: conditional branches, unconditional
jumps, calls, returns

(e.g. EAX functions as accumulator,
+ String instructions: move, compare

ECX as counter for loops)
— MOVS: copies from string source to destination, incrementing ESI
and EDI; may be repeated

— Often slower than equivalent software loop

80-bit floating point stack
ST(0)-ST(7)

EEL-4713C - Ann Gordon-Ross EEL-4713C - Ann Gordon-Ross

X86 encoding

a. JE EIP + displacamant

4 4 8
- [Condr| o
JE
)E \ 20k Displacement
b. CALL
8 32
‘ CALL Offsal

€. MOV EBX, [EDI + 45]
6 11 8

‘ wov [olw[Po;:;m | Diepiacement

d. PUSH ESI
5 3

0. ADD EAX, #6765
4 3 1 32

’ ADD lnw’wl Immediato

. TEST EDX, #42
7 1 8

[TEST M Postoyte

Immediate

EEL-4713C - Ann Gordon-Ross

Next lecture

* Introduction to the logic design process
— Refer to slides and Appendix C, sections C.5-C.6

EEL-4713C - Ann Gordon-Ross

RISC vs. CISC

* Long ago, assembly programming was very common
— And memories were much smaller
— CISC gives more programming power and can reduce code size
* Nowadays, most programming is done with high-
level languages and compilers
— Compilers do not use all CISC instructions

— Simpler is better from an implementation standpoint — more on this
during class

» Support for legacy codes and volume
— Push for continued support of CISC ISAs like x86

+ Compromise approach
— Present CISC ISA to the ‘outside world’
— Convert CISC instructions to RISC internally

EEL-4713C - Ann Gordon-Ross

