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Outline of Today’s Lecture 

°  An Overview of the Design Process 
•  Illustration using example of ALU design 

°  Reading: Appendix C.5-C6 
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The Design Process 

"To Design Is To Represent" 
Design activity yields description/representation of an object 

--  Distinguish concept from artifact 

--  The concept is captured in one or more representation languages 

--  This process IS design 

Design Begins With Requirements 

--  Functional Capabilities: what it will do 

--  Performance Characteristics:  Speed, Power, Area, Cost, . . . 
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Design Process 

Design Finishes As Assembly 

--  Design understood in terms of 
    components and how they have 
    been assembled 

--  Top Down decomposition  of 
    complex functions (behaviors) 
    into more primitive functions 

--  Bottom-up composition of primitive 
    building blocks into more complex assemblies 

CPU 

Datapath Control 

ALU Regs Shifter 

Nand 
Gate 

Design is a creative process,  not a simple method 
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Design as Search  

Design involves educated guesses and verification 

--  Given the goals, how should these be prioritized? 

--  Given alternative design pieces, which should be selected? 

--  Given design space of components & assemblies, which part will yield 
     the best solution? 

Feasible  (good) choices vs. Optimal choices 

Problem A 

Strategy 1 Strategy 2 

SubProb 1 SubProb2 SubProb3 

BB1 BB2 BB3 BBn 
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Problem: Design a “fast” ALU for the MIPS ISA 

°  Requirements? 

°  Must support the Arithmetic / Logic operations 

°  Tradeoffs of cost and speed based on  frequency of occurrence,
 hardware budget 
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MIPS ALU requirements 

°  Add,  AddU,  Sub,   SubU, AddI, AddIU  
•  => 2’s complement adder/sub with overflow detection 

°  And,  Or, AndI, OrI, Xor, Xori, Nor 
•  => Logical AND, logical OR, XOR, nor 

°  SLTI, SLTIU (set less than) 
•  => 2’s complement adder with inverter, check sign bit of result 
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MIPS arithmetic instruction format 

°  Signed arithmetic generates overflow, no carry 

R-type: 

I-Type: 

31 25 20 15 5 0 

op Rs Rt Rd funct 

op Rs Rt Immed 16 

Type  op  funct 

ADDI  10  xx 

ADDIU  11  xx 

SLTI  12  xx 

SLTIU  13  xx 

ANDI  14  xx 

ORI  15  xx 

XORI  16  xx 

LUI  17  xx 

Type  op  funct 

ADD  00  40 

ADDU  00  41 

SUB  00  42   

SUBU  00  43 

AND  00  44 

OR  00  45 

XOR  00  46 

NOR  00  47 

Type  op  funct 

 00  50 

 00  51 

SLT  00  52   

SLTU  00  53 
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Design Trick: divide & conquer 

°  Break the problem into simpler problems, solve them and glue together
 the solution 

°  Example: assume the immediates have been taken care of before the
 ALU 

•  10 operations (4 bits) 00  add 

01  addU 

02  sub 

03  subU 

04  and 

05  or 

06  xor 

07  nor 

12  slt 

13  sltU 
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Refined Requirements 

(1) Functional Specification 
inputs:  2 x 32-bit operands A, B, 4-bit mode (control) 
outputs:  32-bit result S, 1-bit carry, 1 bit overflow 
operations:  add, addu, sub, subu, and, or, xor, nor, slt, sltU 

(2) Block Diagram          (CAD-TOOL symbol, VHDL entity) 

A B 
m 

ovf 
S 

32 32 

32 

4 
c 
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*Behavioral Representation: VHDL 

Entity ALU is 
 generic (c_delay: integer := 20 ns; 

             S_delay: integer := 20 ns); 

 port (  signal A, B:  in  vlbit_vector (0 to 31); 
  signal    m:  in  vlbit_vector (0 to 3); 
  signal    S: out  vlbit_vector (0 to 31); 
  signal    c: out  vlbit; 
  signal  ovf: out  vlbit) 

end ALU; 

. . .  

S <= A + B; 
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Refined Diagram: bit-slice ALU 

A B 

M 

S 

32 32 

32 

4 

Ovflw 

ALU0 

a0 b0 
m 

cin co 
s0 

ALU0 

a31 b31 
m 

cin co 
s31 
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Glue logic: selection/multiplexing 

A 

B 

1-bit 
Full 

Adder 

CarryOut 

M
ux 

CarryIn 

Result 

°  Design trick 2: take pieces you know (or can imagine) and try to put
 them together 

°  Design trick 3: solve part of the problem and extend 

add 

and 

or 

S-select 

•  Here is a design for a 1-bit ALU: 
•  Performs AND, OR, and ADD 
•  Not SUB 

•  Can create a 4-bit ALU by
 connecting 4 1-bit ALUs together 

•  Carry out -> Carry in 

EEL-4713C Ann Gordon-Ross 

A One-bit Full Adder 
°  This is also called a (3, 2) adder 

•  3 inputs, 2 outputs 

°  Half Adder: No CarryIn nor CarryOut 

°  Truth Table: 

1-bit 
Full 

Adder 

CarryOut 

CarryIn 

A 

B 
C 

Inputs Outputs 

Comments A B CarryIn Sum CarryOut 

0 0 0 0 0 0 + 0 + 0 = 00 

0 0 1 0 1 0 + 0 + 1 = 01 

0 1 0 0 1 0 + 1 + 0 = 01 

0 1 1 1 0 0 + 1 + 1 = 10 

1 0 0 0 1 1 + 0 + 0 = 01 

1 0 1 1 0 1 + 0 + 1 = 10 

1 1 0 1 0 1 + 1 + 0 = 10 

1 1 1 1 1 1 + 1 + 1 = 11 
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Logic Equation for CarryOut 

°  CarryOut = (!A & B & CarryIn)  |  (A & !B & CarryIn)  |  (A & B & !CarryIn) 
          |   (A & B & CarryIn) 

°  CarryOut = B & CarryIn  |  A & CarryIn  |  A & B 

Inputs Outputs 

Comments A B CarryIn Sum CarryOut 

0 0 0 0 0 0 + 0 + 0 = 00 

0 0 1 0 1 0 + 0 + 1 = 01 

0 1 0 0 1 0 + 1 + 0 = 01 

0 1 1 1 0 0 + 1 + 1 = 10 

1 0 0 0 1 1 + 0 + 0 = 01 

1 0 1 1 0 1 + 0 + 1 = 10 

1 1 0 1 0 1 + 1 + 0 = 10 

1 1 1 1 1 1 + 1 + 1 = 11 
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Logic Equation for Sum 

°  Sum =  (!A & !B & CarryIn)  |  (!A & B & !CarryIn)  |  (A & !B & !CarryIn) 
          |   (A & B & CarryIn) 

Inputs Outputs 

Comments A B CarryIn Sum CarryOut 

0 0 0 0 0 0 + 0 + 0 = 00 

0 0 1 0 1 0 + 0 + 1 = 01 

0 1 0 0 1 0 + 1 + 0 = 01 

0 1 1 1 0 0 + 1 + 1 = 10 

1 0 0 0 1 1 + 0 + 0 = 01 

1 0 1 1 0 1 + 0 + 1 = 10 

1 1 0 1 0 1 + 1 + 0 = 10 

1 1 1 1 1 1 + 1 + 1 = 11 
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Logic Equation for Sum (continue) 

°  Sum =  (!A & !B & CarryIn)  |  (!A & B & !CarryIn)  |  (A & !B & !CarryIn) 
          |   (A & B & CarryIn) 

°  Sum = A  XOR  B  XOR  CarryIn 

°  Truth Table for XOR: 

X Y X   XOR   Y 

0 0 0 
0 1 1 
1 0 1 
1 1 0 
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A 4-bit ALU 

°                         1-bit ALU           4-bit ALU 

A 

B 

1-bit 
Full 

Adder 

CarryOut 

M
ux 

CarryIn 

Result 

A0 

B0 
1-bit 
ALU 

Result0 

CarryIn0 

CarryOut0 
A1 

B1 
1-bit 
ALU 

Result1 

CarryIn1 

CarryOut1 
A2 

B2 
1-bit 
ALU 

Result2 

CarryIn2 

CarryOut2 
A3 

B3 
1-bit 
ALU 

Result3 

CarryIn3 

CarryOut3 

•  Still no SUB! 
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How About Subtraction? 

°  Keep in mind the following: 
•  (A - B) is the same as: A + (-B) 
•  2’s Complement: take the inverse of every bit and add 1 

°  Bit-wise inverse of B is !B: 
•  A + !B + 1 = A + (!B + 1) = A + (-B) = A - B 

“A
L

U
” 

4 

4 

4 

A 

!B 

Result 

Zero 

CarryIn 

CarryOut 

4 
B 

4 

0 

1 

2x1 M
ux 

Sel 

Subtract 
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Revised Diagram 

°  LSB and MSB need to do a little extra 

A B 

M 

S 

32 32 

32 

4 

Ovflw 

ALU0 

a0 b0 

cin co 
s0 

ALU0 

a31 b31 

cin co 
s31 

Control 
logic to 
produce 
select, 
complement, 
c-in 

? 
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Overflow 

°  Examples:  7  +  3  =  10   but ...                     

°                  - 4  -  5  =  - 9    but  ... 

2’s Complement Binary Decimal 
0 0000 
1 0001 
2 0010 
3 0011 

0000 
1111 
1110 
1101 

Decimal 
0 

-1 
-2 
-3 

4 0100 
5 0101 
6 0110 
7 0111 

1100 
1011 
1010 
1001 

-4 
-5 
-6 
-7 

1000 -8 

0 1 1 1 

0 0 1 1 + 

1 0 1 0 

1 

1 1 0 0 

1 0 1 1 + 

0 1 1 1 

1 1 0 

7 
3 

1 

– 6 

– 4 
– 5 

7 
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Overflow Detection 

°  Overflow: the result is too large (or too small) to represent properly 
•  2’s complement 4-bit range example: - 8 < = 4-bit binary number <= 7 

°  When adding operands with different signs, overflow cannot occur! 

°  Overflow occurs when adding: 
•  2 positive numbers and the sum is negative 
•  2 negative numbers and the sum is positive 

°  On your own: Prove you can detect overflow by: 
•  Carry into MSB ! Carry out of MSB 

0 1 1 1 

0 0 1 1 + 

1 0 1 0 

1 

1 1 0 0 

1 0 1 1 + 

0 1 1 1 

1 1 0 

7 
3 

1 

– 6 

–4 
– 5 

7 

0 
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Overflow Detection Logic 

°  Carry into MSB ! Carry out of MSB 
•  For a N-bit ALU: Overflow = CarryIn[N - 1]  XOR  CarryOut[N - 1] 

A0 

B0 
1-bit 
ALU 

Result0 

CarryIn0 

CarryOut0 
A1 

B1 
1-bit 
ALU 

Result1 

CarryIn1 

CarryOut1 
A2 

B2 
1-bit 
ALU 

Result2 

CarryIn2 

A3 

B3 
1-bit 
ALU 

Result3 

CarryIn3 

CarryOut3 

Overflow 

X Y X   XOR   Y 

0 0 0 
0 1 1 
1 0 1 
1 1 0 
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Zero Detection Logic 
°  Zero Detection Logic is just one big NOR gate 

•  Any non-zero input to the NOR gate will cause its output to be zero 

°  Leverage this for BNE (a-b != 0) and BEQ (a-b == 0) 
CarryIn0 

A0 

B0 
1-bit 
ALU 

Result0 

CarryOut0 
A1 

B1 
1-bit 
ALU 

Result1 
CarryIn1 

CarryOut1 
A2 

B2 
1-bit 
ALU 

Result2 
CarryIn2 

CarryOut2 
A3 

B3 
1-bit 
ALU 

Result3 
CarryIn3 

CarryOut3 

Zero 
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More Revised Diagram 

°  LSB and MSB need to do a little extra 

A B 

M 

S 

32 32 

32 

4 

Ovflw 

ALU0 

a0 b0 

cin co 
s0 

ALU0 

a31 b31 

cin co 
s31 

signed-arith 
and cin xor co 

Control 
logic to 
produce 
select, 
complement, 
c-in 
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But What about Performance? 

°  Critical Path of n-bit Rippled-carry adder is n*CP_1bit 

A0 

B0 
1-bit 
ALU 

Result0 

CarryIn0 

CarryOut0 
A1 

B1 
1-bit 
ALU 

Result1 

CarryIn1 

CarryOut1 
A2 

B2 
1-bit 
ALU 

Result2 

CarryIn2 

CarryOut2 
A3 

B3 
1-bit 
ALU 

Result3 

CarryIn3 

CarryOut3 

Design Trick: add hardware to deal with critical path separately 
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The Disadvantage of Ripple Carry 

°  The adder we just built is called a “Ripple Carry Adder” 
•  The carry bit may have to propagate from LSB to MSB 
•  Worst case delay for a N-bit adder: 2N-gate delay 

A0 

B0 
1-bit 
ALU 

Result0 

CarryOut0 
A1 

B1 
1-bit 
ALU 

Result1 

CarryIn1 

CarryOut1 
A2 

B2 
1-bit 
ALU 

Result2 

CarryIn2 

A3 

B3 
1-bit 
ALU 

Result3 

CarryIn3 

CarryOut3 

CarryOut2 

CarryIn0 

CarryIn 

CarryOut 

A 

B 
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Carry Look Ahead 

A  B  C-out 
0  0  0  “kill” 
0  1  C-in  “propagate” 
1  0  C-in  “propagate” 
1  1  1  “generate” 

A0 

B0 

S 
G 
P 

P = A xor B 
G = A and B 
   *** 

A1 

B1 

S 
G 
P 

A2 

B2 

S 
G 
P 

A3 

B3 

S 
G 
P 

Cin 

C1 =G0 + C0 • P0 

C2 = G1 + G0 • P1 + C0 • P0 • P1 

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2 

G 

C4 = . . . 

P 
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The Idea Behind Carry Lookahead (Continue) 

°  Using the two new terms we just defined: 
•  Generate Carry at Bit i  gi  =  Ai  &  Bi 
•  Propagate Carry via Bit i  pi  =  Ai   or  Bi 

°  We can rewrite: 
•  Cin1  =  g0  |  (p0 & Cin0) 
•  Cin2  =  g1  |  (p1 & g0)  |  (p1 & p0 & Cin0) 
•  Cin3  =  g2  |  (p2 & g1)  |  (p2 & p1 & g0)  |  (p2 & p1 & p0 & Cin0) 

°  Carry going into bit 3 is 1 if 
•  We generate a carry at bit 2 (g2) 
•  Or we generate a carry at bit 1 (g1) and 

bit 2 allows it to propagate (p2 & g1) 
•  Or we generate a carry at bit 0 (g0) and 

bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)  
•  Or we have a carry input at bit 0 (Cin0) and 

bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0) 
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A Partial Carry Lookahead Adder 
°  It is very expensive to build a “full” carry lookahead adder 

•  Just imagine the length of the equation for Cin31 

°  Common practices: 
•  Connect several N-bit Lookahead Adders to form a big adder 

-  Two levels of look-aheads (cascaded, as seen before) 
-  Or, ripple-carry of look-aheads  

•  Example: connect four 8-bit carry lookahead adders to form 
a 32-bit partial carry lookahead adder 

8-bit Carry 
Lookahead 

Adder 

C0 

8 

8 8 

Result[7:0] 

B[7:0] A[7:0] 

8-bit Carry 
Lookahead 

Adder 

C8 

8 

8 8 

Result[15:8] 

B[15:8] A[15:8] 

8-bit Carry 
Lookahead 

Adder 

C16 

8 

8 8 

Result[23:16] 

B[23:16] A[23:16] 

8-bit Carry 
Lookahead 

Adder 

C24 

8 

8 8 

Result[31:24] 

B[31:24] A[31:24] 
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Elements of the Design Process 

°  Divide and Conquer (e.g., ALU) 
•  Formulate  a solution in terms of simpler components. 
•  Design each of the components (subproblems) 

°  Generate and Test (e.g., ALU) 
•  Given a collection of building blocks, look for ways of putting

 them together that meets requirement 

°  Successive Refinement (e.g., carry lookahead) 
•  Solve "most" of the problem (i.e., ignore some constraints or

 special cases), then examine and correct shortcomings. 
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Summary of the Design Process 

Hierarchical Design to manage complexity 

Importance of Design Representations: 

     Block Diagrams 

     Decomposition into Bit Slices 

     Truth Tables, K-Maps 

     Circuit Diagrams 

     Other Descriptions:  state diagrams, timing diagrams, . . . 

Optimization Criteria: 

     Gate Count 

     [Package Count] 

Logic Levels 

Fan-in/Fan-out 
Power 

top 
down bottom  

up 

Area 
Delay 

mux design 
meets at TT 

Cost Design time Pin Out 
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Next lecture 

°  The MIPS single-cycle datapath 
•  4.1-4.4 


