
EEL-4713C Ann Gordon-Ross

EEL-4713C
Computer Architecture

Introduction: the Logic Design Process

EEL-4713C Ann Gordon-Ross

Outline of Today’s Lecture

°  An Overview of the Design Process
•  Illustration using example of ALU design

°  Reading: Appendix C.5-C6

EEL-4713C Ann Gordon-Ross

The Design Process

"To Design Is To Represent"
Design activity yields description/representation of an object

-- Distinguish concept from artifact

-- The concept is captured in one or more representation languages

-- This process IS design

Design Begins With Requirements

-- Functional Capabilities: what it will do

-- Performance Characteristics: Speed, Power, Area, Cost, . . .

EEL-4713C Ann Gordon-Ross

Design Process

Design Finishes As Assembly

-- Design understood in terms of
 components and how they have
 been assembled

-- Top Down decomposition of
 complex functions (behaviors)
 into more primitive functions

-- Bottom-up composition of primitive
 building blocks into more complex assemblies

CPU

Datapath Control

ALU Regs Shifter

Nand
Gate

Design is a creative process, not a simple method

EEL-4713C Ann Gordon-Ross

Design as Search

Design involves educated guesses and verification

-- Given the goals, how should these be prioritized?

-- Given alternative design pieces, which should be selected?

-- Given design space of components & assemblies, which part will yield
 the best solution?

Feasible (good) choices vs. Optimal choices

Problem A

Strategy 1 Strategy 2

SubProb 1 SubProb2 SubProb3

BB1 BB2 BB3 BBn

EEL-4713C Ann Gordon-Ross

Problem: Design a “fast” ALU for the MIPS ISA

°  Requirements?

°  Must support the Arithmetic / Logic operations

°  Tradeoffs of cost and speed based on frequency of occurrence,
 hardware budget

EEL-4713C Ann Gordon-Ross

MIPS ALU requirements

°  Add, AddU, Sub, SubU, AddI, AddIU
•  => 2’s complement adder/sub with overflow detection

°  And, Or, AndI, OrI, Xor, Xori, Nor
•  => Logical AND, logical OR, XOR, nor

°  SLTI, SLTIU (set less than)
•  => 2’s complement adder with inverter, check sign bit of result

EEL-4713C Ann Gordon-Ross

MIPS arithmetic instruction format

°  Signed arithmetic generates overflow, no carry

R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADDI 10 xx

ADDIU 11 xx

SLTI 12 xx

SLTIU 13 xx

ANDI 14 xx

ORI 15 xx

XORI 16 xx

LUI 17 xx

Type op funct

ADD 00 40

ADDU 00 41

SUB 00 42

SUBU 00 43

AND 00 44

OR 00 45

XOR 00 46

NOR 00 47

Type op funct

 00 50

 00 51

SLT 00 52

SLTU 00 53

EEL-4713C Ann Gordon-Ross

Design Trick: divide & conquer

°  Break the problem into simpler problems, solve them and glue together
 the solution

°  Example: assume the immediates have been taken care of before the
 ALU

•  10 operations (4 bits) 00 add

01 addU

02 sub

03 subU

04 and

05 or

06 xor

07 nor

12 slt

13 sltU

EEL-4713C Ann Gordon-Ross

Refined Requirements

(1) Functional Specification
inputs: 2 x 32-bit operands A, B, 4-bit mode (control)
outputs: 32-bit result S, 1-bit carry, 1 bit overflow
operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

(2) Block Diagram (CAD-TOOL symbol, VHDL entity)

A B
m

ovf
S

32 32

32

4
c

EEL-4713C Ann Gordon-Ross

*Behavioral Representation: VHDL

Entity ALU is
 generic (c_delay: integer := 20 ns;

 S_delay: integer := 20 ns);

 port (signal A, B: in vlbit_vector (0 to 31);
 signal m: in vlbit_vector (0 to 3);
 signal S: out vlbit_vector (0 to 31);
 signal c: out vlbit;
 signal ovf: out vlbit)

end ALU;

. . .

S <= A + B;

EEL-4713C Ann Gordon-Ross

Refined Diagram: bit-slice ALU

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0
m

cin co
s0

ALU0

a31 b31
m

cin co
s31

EEL-4713C Ann Gordon-Ross

Glue logic: selection/multiplexing

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

°  Design trick 2: take pieces you know (or can imagine) and try to put
 them together

°  Design trick 3: solve part of the problem and extend

add

and

or

S-select

•  Here is a design for a 1-bit ALU:
•  Performs AND, OR, and ADD
•  Not SUB

•  Can create a 4-bit ALU by
 connecting 4 1-bit ALUs together

•  Carry out -> Carry in

EEL-4713C Ann Gordon-Ross

A One-bit Full Adder
°  This is also called a (3, 2) adder

•  3 inputs, 2 outputs

°  Half Adder: No CarryIn nor CarryOut

°  Truth Table:

1-bit
Full

Adder

CarryOut

CarryIn

A

B
C

Inputs Outputs

Comments A B CarryIn Sum CarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

EEL-4713C Ann Gordon-Ross

Logic Equation for CarryOut

°  CarryOut = (!A & B & CarryIn) | (A & !B & CarryIn) | (A & B & !CarryIn)
 | (A & B & CarryIn)

°  CarryOut = B & CarryIn | A & CarryIn | A & B

Inputs Outputs

Comments A B CarryIn Sum CarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

EEL-4713C Ann Gordon-Ross

Logic Equation for Sum

°  Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)
 | (A & B & CarryIn)

Inputs Outputs

Comments A B CarryIn Sum CarryOut

0 0 0 0 0 0 + 0 + 0 = 00

0 0 1 0 1 0 + 0 + 1 = 01

0 1 0 0 1 0 + 1 + 0 = 01

0 1 1 1 0 0 + 1 + 1 = 10

1 0 0 0 1 1 + 0 + 0 = 01

1 0 1 1 0 1 + 0 + 1 = 10

1 1 0 1 0 1 + 1 + 0 = 10

1 1 1 1 1 1 + 1 + 1 = 11

EEL-4713C Ann Gordon-Ross

Logic Equation for Sum (continue)

°  Sum = (!A & !B & CarryIn) | (!A & B & !CarryIn) | (A & !B & !CarryIn)
 | (A & B & CarryIn)

°  Sum = A XOR B XOR CarryIn

°  Truth Table for XOR:

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

EEL-4713C Ann Gordon-Ross

A 4-bit ALU

°  1-bit ALU 4-bit ALU

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

•  Still no SUB!

EEL-4713C Ann Gordon-Ross

How About Subtraction?

°  Keep in mind the following:
•  (A - B) is the same as: A + (-B)
•  2’s Complement: take the inverse of every bit and add 1

°  Bit-wise inverse of B is !B:
•  A + !B + 1 = A + (!B + 1) = A + (-B) = A - B

“A
L

U
”

4

4

4

A

!B

Result

Zero

CarryIn

CarryOut

4
B

4

0

1

2x1 M
ux

Sel

Subtract

EEL-4713C Ann Gordon-Ross

Revised Diagram

°  LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cin co
s0

ALU0

a31 b31

cin co
s31

Control
logic to
produce
select,
complement,
c-in

?

EEL-4713C Ann Gordon-Ross

Overflow

°  Examples: 7 + 3 = 10 but ...

°  - 4 - 5 = - 9 but ...

2’s Complement Binary Decimal
0 0000
1 0001
2 0010
3 0011

0000
1111
1110
1101

Decimal
0

-1
-2
-3

4 0100
5 0101
6 0110
7 0111

1100
1011
1010
1001

-4
-5
-6
-7

1000 -8

0 1 1 1

0 0 1 1 +

1 0 1 0

1

1 1 0 0

1 0 1 1 +

0 1 1 1

1 1 0

7
3

1

– 6

– 4
– 5

7

EEL-4713C Ann Gordon-Ross

Overflow Detection

°  Overflow: the result is too large (or too small) to represent properly
•  2’s complement 4-bit range example: - 8 < = 4-bit binary number <= 7

°  When adding operands with different signs, overflow cannot occur!

°  Overflow occurs when adding:
•  2 positive numbers and the sum is negative
•  2 negative numbers and the sum is positive

°  On your own: Prove you can detect overflow by:
•  Carry into MSB ! Carry out of MSB

0 1 1 1

0 0 1 1 +

1 0 1 0

1

1 1 0 0

1 0 1 1 +

0 1 1 1

1 1 0

7
3

1

– 6

–4
– 5

7

0

EEL-4713C Ann Gordon-Ross

Overflow Detection Logic

°  Carry into MSB ! Carry out of MSB
•  For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

EEL-4713C Ann Gordon-Ross

Zero Detection Logic
°  Zero Detection Logic is just one big NOR gate

•  Any non-zero input to the NOR gate will cause its output to be zero

°  Leverage this for BNE (a-b != 0) and BEQ (a-b == 0)
CarryIn0

A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1
CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2
CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3
CarryIn3

CarryOut3

Zero

EEL-4713C Ann Gordon-Ross

More Revised Diagram

°  LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cin co
s0

ALU0

a31 b31

cin co
s31

signed-arith
and cin xor co

Control
logic to
produce
select,
complement,
c-in

EEL-4713C Ann Gordon-Ross

But What about Performance?

°  Critical Path of n-bit Rippled-carry adder is n*CP_1bit

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Design Trick: add hardware to deal with critical path separately

EEL-4713C Ann Gordon-Ross

The Disadvantage of Ripple Carry

°  The adder we just built is called a “Ripple Carry Adder”
•  The carry bit may have to propagate from LSB to MSB
•  Worst case delay for a N-bit adder: 2N-gate delay

A0

B0
1-bit
ALU

Result0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

CarryOut2

CarryIn0

CarryIn

CarryOut

A

B

EEL-4713C Ann Gordon-Ross

Carry Look Ahead

A B C-out
0 0 0 “kill”
0 1 C-in “propagate”
1 0 C-in “propagate”
1 1 1 “generate”

A0

B0

S
G
P

P = A xor B
G = A and B

A1

B1

S
G
P

A2

B2

S
G
P

A3

B3

S
G
P

Cin

C1 =G0 + C0 • P0

C2 = G1 + G0 • P1 + C0 • P0 • P1

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2

G

C4 = . . .

P

EEL-4713C Ann Gordon-Ross

The Idea Behind Carry Lookahead (Continue)

°  Using the two new terms we just defined:
•  Generate Carry at Bit i gi = Ai & Bi
•  Propagate Carry via Bit i pi = Ai or Bi

°  We can rewrite:
•  Cin1 = g0 | (p0 & Cin0)
•  Cin2 = g1 | (p1 & g0) | (p1 & p0 & Cin0)
•  Cin3 = g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & Cin0)

°  Carry going into bit 3 is 1 if
•  We generate a carry at bit 2 (g2)
•  Or we generate a carry at bit 1 (g1) and

bit 2 allows it to propagate (p2 & g1)
•  Or we generate a carry at bit 0 (g0) and

bit 1 as well as bit 2 allows it to propagate (p2 & p1 & g0)
•  Or we have a carry input at bit 0 (Cin0) and

bit 0, 1, and 2 all allow it to propagate (p2 & p1 & p0 & Cin0)
EEL-4713C Ann Gordon-Ross

A Partial Carry Lookahead Adder
°  It is very expensive to build a “full” carry lookahead adder

•  Just imagine the length of the equation for Cin31

°  Common practices:
•  Connect several N-bit Lookahead Adders to form a big adder

-  Two levels of look-aheads (cascaded, as seen before)
-  Or, ripple-carry of look-aheads

•  Example: connect four 8-bit carry lookahead adders to form
a 32-bit partial carry lookahead adder

8-bit Carry
Lookahead

Adder

C0

8

8 8

Result[7:0]

B[7:0] A[7:0]

8-bit Carry
Lookahead

Adder

C8

8

8 8

Result[15:8]

B[15:8] A[15:8]

8-bit Carry
Lookahead

Adder

C16

8

8 8

Result[23:16]

B[23:16] A[23:16]

8-bit Carry
Lookahead

Adder

C24

8

8 8

Result[31:24]

B[31:24] A[31:24]

EEL-4713C Ann Gordon-Ross

Elements of the Design Process

°  Divide and Conquer (e.g., ALU)
•  Formulate a solution in terms of simpler components.
•  Design each of the components (subproblems)

°  Generate and Test (e.g., ALU)
•  Given a collection of building blocks, look for ways of putting

 them together that meets requirement

°  Successive Refinement (e.g., carry lookahead)
•  Solve "most" of the problem (i.e., ignore some constraints or

 special cases), then examine and correct shortcomings.

EEL-4713C Ann Gordon-Ross

Summary of the Design Process

Hierarchical Design to manage complexity

Importance of Design Representations:

 Block Diagrams

 Decomposition into Bit Slices

 Truth Tables, K-Maps

 Circuit Diagrams

 Other Descriptions: state diagrams, timing diagrams, . . .

Optimization Criteria:

 Gate Count

 [Package Count]

Logic Levels

Fan-in/Fan-out
Power

top
down bottom

up

Area
Delay

mux design
meets at TT

Cost Design time Pin Out

EEL-4713C Ann Gordon-Ross

Next lecture

°  The MIPS single-cycle datapath
•  4.1-4.4

