Midterm 2 Study Guide

- Performance
 - Calculate CPI based on instruction mix
 - o Calculate CPI speedup based on architectural changes
 - o Compare CPIs of processors based on instruction mixes
 - o Chart on slide 16
- Pipelining
 - o Basic concept and goal
 - o Key points on Lec10-slide 7
 - O What makes pipelining hard?
 - o Pipeline registers: purpose, overhead incurred, etc
 - o Latency vs. bandwidth
 - How does pipelining affect these wrt to a single instruction?
 - o Structural, control and data hazards
 - What are they?
 - Do they exist in the MIPS 5-stage pipeline as you have implemented? Why/why not?
 - If a hazard exists (independent of the architecture), what steps or measures can be taken to remove the hazard?
 - How do hazards affect the flow of instructions?
 - Why is it beneficial for all MIPS instructions to take all 5 stages, even if some stages are not used by all instructions?
 - o Data dependencies vs. data hazard
 - Data forwarding
 - What is it?
 - How does it work?
 - What are the benefits?
 - How does it ensure correct data flow?
 - What data hazards cannot be removed by forwarding? What must be done?
 - o Code evaluation:
 - Given some assembly code, identify the data dependencies and data hazards
 - Software scheduling:
 - What is it?
 - Where is it done?
 - Why does it still ensure correct data flow?
 - Given code with load-use hazards, reorder code to remove hazards See Lec11-slide 19-21
 - o Branch hazards
 - Why are branches so bad for performance?
 - Describe the optimization that moves the branch determination from the 4th cycle to the 2nd cycle in your MIPS 5-stage pipeline.
 - What is a branch delay slot? How does it improve performance?
 - Branch prediction:
 - What is it?
 - How does it improve performance?
 - o Other data hazards: RAW, WAW, and WAR
 - Identify them in assembly code or give assembly code that exhibits these hazards
 - o Calculate speedup wrt pipelining
 - What is the ideal speedup?
 - What hinders achieving the ideal speedup?
 - Calculate pipeline speedup (see Lec11-slide 45) and compare different systems
- Memory hierarchies
 - o Benefits of a hierarchical memory approach wrt to performance
 - o Spatial vs temporal locality and how memory hierarchies exploit both
 - o Terminology Lec 12-slide 8
 - Given an address and a cache configuration, determine the number of bits required for the block offset, index, and tag

- o Tradeoffs (small vs. large):
 - Total size
 - Line (block) size
 - Associativity
- Calculations
 - Average memory access time given hit/miss rates and penalties
 - Compare different systems
- o Miss penalty components (bandwidth vs. latency)
- o 3 C's for cache misses (conflict, capacity, cold)
 - Mechanisms to reduce each type
- O What happens on a miss:
 - How is the new location determined wrt to associativity?
 - Block replacement policies
 - Random, LRU, pseudo-random
- o Write policies: Write back vs write through
 - How do they operate?
 - Tradoffs and implications
 - What is a write buffer? What does it improve? How does it work?
- o Write allocate vs. write no-allocate
 - How do they operate?
 - Tradoffs and implications
- o Purpose of dirty and valid bits
- I/O
- Magnetic disks
 - Basic layout (sectors, tracks, head, arm, etc)
 - Process to access a bit of data
 - Disk access time components
- Queuing theory
 - Producer server model
 - Throughput vs response time
 - How do you maximize/minimize?
 - Why do they compete?
 - What are the assumptions we have made to make it simpler
 - Terminology
 - Arrival rate
 - Time in system
 - Time in queue
 - Time in server
 - Service rate
 - Total system latency = time in queue + time in server
 - Server utilization
 - Calculations
 - Server utilization (Lec 13-slide 26)
 - Time is queue (Lec 13-slide 28)
 - Compare time in system (Lec 13-slides 29-30)
- o Reliability vs availability
 - Define and compare
 - How can both be improved?
 - MTTF
 - MTTR
 - Calculate availability wrt to MTTF and MTTR
 - Calculate system reliability based on component reliability
 - How does redundancy help?
- Disk arrays
 - Basic principle in the beginning, why did they fall out of usage, and why are the back now

- **Effects on reliability and availability**
- RAID
- What is the concept of RAID? Why is it important? Why is it useful?
- Give any possible advantages/disadvantages to using RAID X. If I were to ask you this question, I would say what RAID X does to remind you
- How do different RAID methods perform for little and big writes?
- Know the differences between the following RAID models. The table on page 363 might be helpful
 - RAID 1 mirrored
 - RAID 4 parity-based with one parity disk
 - RAID 5 parity based with the parity spread across all disks
 - RAID 6 row and diagonal parity
- How can RAID 6 recover from multiple disk failures? Work through a recovery problem like in the slides
- o Error vs fault vs failure
 - What are they, why are they different?
 - How can you prevent one from becoming another.
- Virtual Memory (VM)
 - o What benefits does VM provide?
 - o How is VM similar to caching? What similarities do they share?
 - o How does VM abstract the main vs. secondary memory structure?
 - o Page tables
 - What do they store? (know all fields' purposes)
 - How are located?
 - Where are they stored?
 - How are the indexed?
 - o Given an address and a page size, determine the page offset bits and the virtual tag
 - o Page faults
 - What is it?
 - What handles page faults and why?
 - Page replacement policies
 - Optimal page sizes
 - Access rights
 - What are they?
 - Purpose?
 - Protection violation
 - o TLBs
- Purpose
- Organization
- Methods to reduce translation time (overlap with cache access, virtually indexed, physically tagged caches)
- Problems
- o Caches and virtual addresses
 - Aliasing problem with virtually indexed, virtually tagged caches
- Most important questions in the 2006 sample test is question 1 and question 4