Midterm 2 Study Guide

• Performance
 o Calculate CPI based on instruction mix
 o Calculate CPI speedup based on architectural changes
 o Compare CPIs of processors based on instruction mixes
 o Chart on slide 16

• Pipelining
 o Basic concept and goal
 o Key points on Lec10-slide 7
 o What makes pipelining hard?
 o Pipeline registers: purpose, overhead incurred, etc
 o Latency vs. bandwidth
 ▪ How does pipelining affect these wrt to a single instruction?
 o Structural, control and data hazards
 ▪ What are they?
 ▪ Do they exist in the MIPS 5-stage pipeline as you have implemented? Why/why not?
 ▪ If a hazard exists (independent of the architecture), what steps or measures can be taken to remove the hazard?
 ▪ How do hazards affect the flow of instructions?
 o Why is it beneficial for all MIPS instructions to take all 5 stages, even if some stages are not used by all instructions?
 o Data dependencies vs. data hazard
 o Data forwarding
 ▪ What is it?
 ▪ How does it work?
 ▪ What are the benefits?
 ▪ How does it ensure correct data flow?
 ▪ What data hazards cannot be removed by forwarding? What must be done?
 o Code evaluation:
 ▪ Given some assembly code, identify the data dependencies and data hazards
 o Software scheduling:
 ▪ What is it?
 ▪ Where is it done?
 ▪ Why does it still ensure correct data flow?
 ▪ Given code with load-use hazards, reorder code to remove hazards – See Lec11-slide 19-21
 o Branch hazards
 ▪ Why are branches so bad for performance?
 ▪ Describe the optimization that moves the branch determination from the 4th cycle to the 2nd cycle in your MIPS 5-stage pipeline.
 ▪ What is a branch delay slot? How does it improve performance?
 ▪ Branch prediction:
 ▪ What is it?
 ▪ How does it improve performance?
 o Other data hazards: RAW, WAW, and WAR
 ▪ Identify them in assembly code or give assembly code that exhibits these hazards
 o Calculate speedup wrt pipelining
 ▪ What is the ideal speedup?
 ▪ What hinders achieving the ideal speedup?
 ▪ Calculate pipeline speedup (see Lec11-slide 45) and compare different systems

• Memory hierarchies
 o Benefits of a hierarchical memory approach wrt to performance
 o Spatial vs temporal locality and how memory hierarchies exploit both
 o Terminology Lec 12-slide 8
 o Given an address and a cache configuration, determine the number of bits required for the block offset, index, and tag
Tradeoffs (small vs. large):
- Total size
- Line (block) size
- Associativity

Calculations
- Average memory access time given hit/miss rates and penalties
- Compare different systems

Miss penalty components (bandwidth vs. latency)

3 C’s for cache misses (conflict, capacity, cold)
- Mechanisms to reduce each type

What happens on a miss:
- How is the new location determined wrt to associativity?
- Block replacement policies
 - Random, LRU, pseudo-random

Write policies: Write back vs write through
- How do they operate?
- Tradoffs and implications
 - What is a write buffer? What does it improve? How does it work?

Write allocate vs. write no-allocate
- How do they operate?
- Tradoffs and implications

Purpose of dirty and valid bits

I/O
- Magnetic disks
 - Basic layout (sectors, tracks, head, arm, etc)
 - Process to access a bit of data
 - Disk access time components

Queuing theory
- Producer server model
- Throughput vs response time
 - How do you maximize/minimize?
 - Why do they compete?
- What are the assumptions we have made to make it simpler

Terminology
- Arrival rate
- Time in system
- Time in queue
- Time in server
- Service rate
- Total system latency = time in queue + time in server
- Server utilization

Calculations
- Server utilization (Lec 13-slide 26)
- Time is queue (Lec 13-slide 28)
- Compare time in system (Lec 13-slides 29-30)

Reliability vs availability
- Define and compare
- How can both be improved?
- MTTF
- MTTR
- Calculate availability wrt to MTTF and MTTR
- Calculate system reliability based on component reliability
 - How does redundancy help?

Disk arrays
- Basic principle in the beginning, why did they fall out of usage, and why are the back now
Effects on reliability and availability

RAID

What is the concept of RAID? Why is it important? Why is it useful?

Give any possible advantages/disadvantages to using RAID X. If I were to ask you this question, I would say what RAID X does to remind you

How do different RAID methods perform for little and big writes?

Know the differences between the following RAID models. The table on page 363 might be helpful

- RAID 1 – mirrored
- RAID 4 – parity-based with one parity disk
- RAID 5 – parity-based with the parity spread across all disks
- RAID 6 – row and diagonal parity

How can RAID 6 recover from multiple disk failures? Work through a recovery problem like in the slides

Error vs fault vs failure

- What are they, why are they different?
- How can you prevent one from becoming another.

Virtual Memory (VM)

- What benefits does VM provide?
- How is VM similar to caching? What similarities do they share?
- How does VM abstract the main vs. secondary memory structure?

Page tables

- What do they store? (know all fields’ purposes)
- How are located?
- Where are they stored?
- How are the indexed?

Given an address and a page size, determine the page offset bits and the virtual tag

Page faults

- What is it?
- What handles page faults and why?
- Page replacement policies
- Optimal page sizes

Access rights

- What are they?
- Purpose?
- Protection violation

TLBs

- Purpose
- Organization
- Methods to reduce translation time (overlap with cache access, virtually indexed, physically tagged caches)
- Problems

Caches and virtual addresses

- Aliasing problem with virtually indexed, virtually tagged caches

Most important questions in the 2006 sample test is question 1 and question 4