
Assignment #2

EEL4713

Peter Borenstein

January 28th, 2012

Introduction

 This assignment focused on propagation delays of two basic devices, multiplexers and

D-flipflops. The registers used in this course are 32 bits wide. Various sized muxes were made

leading up to a 32 bit 2:1 mux. A component was built that zero or sign extends a 16 bit number

to a 32 bit number. It is important to pay attention to propagation to set the right clock speed.

If a clock were to trigger in the middle of propagation, the device would be processing garbage

data.

Design and testing

 The multiplexers were built first. The 2:1 multiplexer has to inputs, in0 and in1, and the

select input, sel, chooses which input is seen at the output. The inputs used were 1, 5 and 32

bits wide. There were only two inputs , so the select signal was only one bit.

 1 bit mux 5 bit mux 32 bit mux

Worst delay 11.7ns 13.6ns 18.5ns

Q 3.2: Rs, Rt, and Rd are represented by 5 bit numbers because there are 32 registers. 5 bits can

make 32 combinations, or one for ever register.

Q 3.5: The propagation increased as the size of the mux increased. This indicates that the chip

being used cant simple arrange muxes in parallel.

 The 32 bit register was created next. The register has an input, D, and an output Q. Q

acquires and holds the value of D if the write bit is true during a rising clock edge. The clock

edge could be falling if the designer chose it to be so. There is an asynchronous clear that sets

the values of Q to zero. The delay for Q to acquire the value D is 13 ns.

Q 3.5: The clock period must be greater than the largest propagation delay. For the register to

work properly, the clock cannot be faster than 77MHz.

 The extender was built last. Immediate instructions only have 16 bits to work with due

to limited instruction length. A 32 bit number is needed to perform arithmetic functions with 32

bit numbers. This device compensates for that by filling in the upper 16 bits with 0’s or 1’s for

negative numbers. A zero extender was built that takes in a 16 bit number and outputs a 32 bit

number with its upper 16 bits set to 0. Then a sign extender was built to fill in the upper 16 bits

of the output with 1’s. These devices are combined and a one bit select signal is created to

choose between the two.

Textbook questions

2.11.4 a) R-type

 b) I-type

2.11.5 a) add

 b) sw

2.11.6 a)0000000000100010000110000010000

 b)101011100000101000000000000010

Appendix

Mux code:

library ieee;

use ieee.std_logic_1164.all;

entity mux1 is

port (sel : in std_logic;

 in1, in0 : in std_logic_vector(31 downto 0); --31 can be changed for the 5 and 1 bit muxes

 output : out std_logic_vector(31 downto 0)

);

end mux1;

architecture behavior of mux1 is

begin

 with sel select --with select select lol

 output<= in1 when '1', -- output= sel and in1 or not sel and in0

 in0 when others;

end behavior;

Register code:

library ieee;

use ieee.std_logic_1164.all;

entity reg32 is

port (D : in std_logic_vector(31 downto 0);

 clk, clr, wr : in std_logic;

 Q : out std_logic_vector(31 downto 0)

);

end reg32;

architecture behavior of reg32 is

begin

 process(clk, clr)

 begin

 if clr='1' then --clr sets Q to 0 asynchronously

 Q<=(others=>'0');

 elsif(clk'event and clk='1' and wr='1') then -- conditions for Q to obtain a value

 Q<=D;

 end if;

 end process;

Zeroext, Signext, andExtender code:

library ieee;

use ieee.std_logic_1164.all;

entity extender is

 port (in0 : in std_logic_vector(15 downto 0); --input is 16 bits

 sel : in std_logic;

 out0 : out std_logic_vector(31 downto 0) --output is 32 bits

);

end extender;

architecture behavior of extender is

begin

 with sel select

 out0<= x"ffff"&in0 when '1',

 x"0000"&in0 when others;

end behavior;

architecture behavior of zeroext is

begin

 out0<= x"0000"&in0; --concatenate with 0’s

end behavior;

architecture behavior of signext is

begin

 out0<= x"ffff"&in0 --concatenate with 1’s

end behavior;

