

Assignment 3
Ch4 textbook problems, bugspim

VHDL: add32, alu32, alu32control, registerFile

Andrew Fowler

2/13/2012

Andrew Fowler EEL4713C Assignment3

2

Introduction:
 This assignment was split into two main parts. The assignment consisted of a MIPS simulator

that had bugs in it (called bugspim) and VHDL design. The MIPS simulator had 5 bugs in it that the user

had to find and report on. The VHDL design consisted of designing a 32 bit adder, an ALU, ALUcontroller,

registerFile which will all be used in the final MIPS processor data path.

Design and Testing:

 VHDL code:

 All VHDL is included in the zip file where this document was found.

 VHDL simulations:

Andrew Fowler EEL4713C Assignment3

3

 Bugspim problems:

 Lui – larger.s file – went to a bad location in memory and created a runtime error.

 BEQ - test.s – branched when the 2 values were not equal.

 JAL – test.s – does not work properly.

 SH – test.s – compile errors when tried to do code that would work.

 ADDU – test.s – works as a normal add would work with negative numbers.

Textbook Questions – old edition of the book
Chapter 4 questions: 4.2.1-3, 4.8.1-3

Question 4.2.1

a. It could reuse the ALU, instruction memory and the Registers black (although additions would

need to be made to add the third register read in) and the data path between the ALU and

registers block.

b. It would reuse the ALU, instruction memory, and the registers block and the data path between

immediate values and ALU.

Question 4.2.2

a. The registers block needs to be expended to include reading 3 registers. The alu also needs to be

extended to accept one more register. The instruction memory might have to be modified to

Andrew Fowler EEL4713C Assignment3

4

hold 3 registers values and any control logic that would know to look for 3 registers would also

need to be changed.

b. Nothing needs to be added, the control logic is there and the registers block will accept the

instruction. The ALU would be in charge of the shift.

Question 4.2.3

a. New control signals would need to be added to the ALU to decide when the third register needs

to be added.

b. No change needed, the SLL instruction is already a mips instruction and should have the needed

control logic to control the ALU.

Question 4.8.1

Figure 1 Credit: http://jjc.hydrus.net/cs61c/handouts/formats4.pdf

a. If bit 7 is effected then the immediate/address part will be altered. Any add immediate

instruction will show the problem. ADDI $t1, $zero, 0xFFFF – if $t1 is 0xFFFF then the bit is not

stuck at 0, if it is any other output there is a problem.

b. Having the bit set to 0 would make data be read from the ALU instead of the memory. Pick an

address that with an offset from a certain location (since the ALU controls offset) and write a

value to the memory location that is different from the offset. Now try to read that memory

location and see if the offset is the data that is produced, or if the actual data from the memory

location is read.

Question 4.8.2

 There is no way that we can set a bit to 1 for the 0 test, and 0 for the 1 test at the same time. So

it is not possible to test both combinations at the same time.

a. ADDI $t1, $zero, 0x0000 – if $t1 is 0x0000 then the bit is not stuck at 1, if it is any other output

there is a problem.

b. There is no 100% reliable test

Question 4.8.3

a. When the bit was in the immediate field then the instructions following would have to add (or

subtract) and extra 127 and then 1 from the immediate value. When it is an offset offset it an

extra 128 when needed.

b. This problem is incurable since there is no other way to store most results into registers (unless

they are coming from memory).

