

Bob Minchin

EEL4713C

Assignment 3

February 13, 2012

INTRODUCTION

The purposes of this assignment were (1) to become further acquainted with the MIPS architecture by
going through a bug-finding exercise in processor simulation and (2) to reinforce some of the basic
principles covered in class by guiding the student through designing some more basic components that
will be needed to build into a microprocessor pipeline later in the semester. A basic adder, a MIPS ALU,
an ALU controller, and a register file were assigned, and each was designed and simulated according to
the directions.

MIPS BUG SIMULATION (“BUGSPIM”)

The purpose of this exercise was to identify five bugs in a MIPS simulation program based on knowledge
of how the MIPS architecture operates. Although the directions seemed straightforward, several
problems were encountered when trying to complete this part of the assignment. First was my difficulty
getting Bugspim to start without the instruction to load it directly into the SPIM directory. Then there
was my complete lack of familiarity with how to work within Grid Appliance/Linux. I had to figure out
everything from how to edit text to how the file path structure worked. Finally, it took me a long time
to figure out that the same lines of code are executed at the beginning of every program and that my
attempts to load custom code into the simulator were actually successful.

After overcoming all of these problems, I did not have much time left to actually perform the simulation.
In order to determine which instructions created problems, I ran the following instructions numerous
times in various different contexts: ADD, ADDI, ADDU, ADDUI, AND, ANDI, BNE, DIV, DIVU, J, JR, LB, LUI,
LW, MFHI, MFLO, MULT, MULTU, OR, ORI, SB, SLL, SLT, SLTI, SLTIU, SLTU, SRL, SUB, SUBU, SW, XOR, and
XORI. However, I was able to locate only one bug, which was as follows.

The instruction “load upper immediate” (lui) does not work. It is designed to take in a 16-bit number
and place it in the upper half of the register. The following code was executed:

lui $t0, 65535

This should have resulted in $t0 = 0xFFFF0000. Instead, it resulted in $t0 = 0x0000FFFF, which means
that the load was accomplished but the shift was not.

DESIGN AND TESTING

The first device to design was a simple 32-bit adder that was named “add32.” It was designed by simply
taking two signals and applying an arithmetic add operation, which was accomplished using the
following code.

-- Bob Minchin
-- EEL 4713C
-- Homework 3
-- Part 3.1: 32-Bit Adder

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY add32 IS
 --32-bit inputs, output
 PORT (in0, in1 : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 sum : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)) ;
END add32 ;

ARCHITECTURE Structure OF add32 IS
BEGIN

 sum <= in0 + in1 ; --Inputs added, output results

END Structure ;

The following are screenshots of the simulation of this device.

The device performed as expected.

The next device was a 32-bit ALU, which eventually will be at the heart of all MIPS operations. The
purpose of this device is to perform basic arithmetic and logic operations on numbers in internal
registers that will be used to execute more complex operations in the computer architecture.

The code used for the overflow flag was quick and dirty—sort of a “brute force” solution that requires
an additional add every time an add or subtract operation is requested. This is an inefficient design that
works for our current purposes but will likely need to be replaced by another solution, such as a ripple-
carry adder, once timing and efficiency become important.

Furthermore, the ALU was implemented as an “all-in-one” device. No modularity was implemented. All
functions were performed internally. As the device is refined, more refined methods of implementation
may be built in to help facilitate greater efficiency.

This ALU, “alu32,” was accomplished with the following code.

-- Bob Minchin
-- EEL 4713C
-- Homework 3
-- Part 3.2: 32-Bit ALU

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY alu32 IS
 --32-bit inputs, output
 --4-bit control input
 --5-bit ALUOp input, shift amount input
 --1-bit shift direction input, output flags
 PORT (ia, ib : IN STD_LOGIC_VECTOR(31 DOWNTO 0) ;
 control : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
 shamt : IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
 shdir : IN STD_LOGIC ;
 o : BUFFER STD_LOGIC_VECTOR(31 DOWNTO 0) ;
 C, Z, S, V : OUT STD_LOGIC) ;
END alu32 ;

ARCHITECTURE Structure OF alu32 IS
 SIGNAL temp33 : STD_LOGIC_VECTOR(32 DOWNTO 0) ;
BEGIN
 PROCESS(ia, ib, control, shamt, shdir, temp33, o)
 VARIABLE temp32 : unsigned(31 DOWNTO 0) ;
 BEGIN
 C <= '0' ; --initialize flags
 V <= '0' ;
 IF o = x"00000000" THEN
 Z <= '1' ;

 ELSE Z <= '0' ;
 END IF ;
 IF o(31) = '1' THEN
 S <= '1' ;
 ELSE S <= '0' ;
 END IF ;
 CASE control IS
 WHEN "0000" => --and
 o <= ia AND ib ;
 WHEN "0001" => --or
 o <= ia OR ib ;
 WHEN "0010" => --add
 temp33 <= ('0' & ia) + ('0' & ib) ;
 temp32 := UNSIGNED(('0' & ia(30 DOWNTO 0))) +

UNSIGNED(('0' & ib(30 DOWNTO 0))) ;
 V <= temp33(32) XOR temp32(31) ;
 C <= temp33(32) ;
 o <= temp33(31 DOWNTO 0) ;
 WHEN "0011" => --shift logical
 IF (shdir = '0') THEN
 temp32 := SHL(UNSIGNED(ib),
 UNSIGNED(shamt)) ;
 ELSE
 temp32 := SHR(UNSIGNED(ib),
 UNSIGNED(shamt)) ;
 END IF ;
 o <= CONV_STD_LOGIC_VECTOR(temp32, 32) ;
 WHEN "0110" => --subtract
 temp33 <= ('0' & ia) + (NOT ('1' & ib)) + 1 ;
 temp32 := UNSIGNED(('0' & ia(30 DOWNTO 0))) +
 UNSIGNED(('0' & ib(30 DOWNTO 0))) ;
 V <= temp33(32) XOR temp32(31) ;
 C <= temp33(32) ;
 o <= temp33(31 DOWNTO 0) ;
 WHEN "0111" => --set less than
 IF (SIGNED(ia) < SIGNED(ib)) THEN
 o <= x"00000001" ;
 ELSE o <= x"00000000" ;
 END IF ;
 WHEN "1100" => --nor
 o <= NOT (ia OR ib) ;
 WHEN "1111" => --set less than unsigned
 IF (UNSIGNED(ia) < UNSIGNED(ib)) THEN
 o <= x"00000001" ;
 ELSE o <= x"00000000" ;
 END IF ;
 WHEN OTHERS =>
 END CASE ;
 END PROCESS ;
END Structure ;

The following are screenshots of the simulation that illustrate each of the ALU operations.

The device performed as expected.

The next part was a controller for this ALU. The job of the controller is to decode the instruction
operand into a set of instructions for the ALU. Because there are a number of instructions that require
the ALU to perform the same operation, this device simply needs to convert the relevant parts of the
machine code into an internal signal that will tell the ALU what it needs to do. Basically, it is a glorified
look-up table.

The first step was to create a physical look-up table that included all the MIPS instructions and their
corresponding ALU operations. Once the instructions and operations were delineated, three-bit ALU
operation codes were assigned to each instruction. If multiple instructions needed the same function
performed in the ALU, they were given the same ALU operation code.

The table that was created can be seen below.

Instruction
Opcode

ALUop Instruction Operand Funct
Field

Desired ALU Action ALU
Control
Input

R-type 100 add 100000 add 0010
001000 000 add imm

add 0010

001001 000 add imm uns

add 0010
R-type 100 add uns 100001 add 0010
R-type 100 and 100100 and 0000
001100 011 and imm

and 0000

000100 001 branch on equal

subtract 0110
000101 001 branch on not equal

subtract 0110

000010

jump
 000011

jump and link

 R-type 100 jump reg 001000
 100100 000 load byte uns

add 0010

100101 000 load hw uns

add 0010
110000 000 load linked

add 0010

001111 000 load upper imm

add 0010
100011 000 load word

add 0010

R-type 100 nor 100111 nor 1100
R-type 100 or 100101 or 0001
001101 010 or imm

or 0001

R-type 100 set less than 101010 set less than 0111
001010 101 set less than imm

set less than 0111

001011 110 set less than imm uns

set less than uns 1111
R-type 100 set less than uns 101011 set less than uns 1111
R-type 100 shift left log 000000 shift log 0011
R-type 100 shift right log 000010 shift log 0011
101000 000 store byte

add 0010

111000 000 store cond

add 0010
101001 000 store hw

add 0010

101011 000 store word

add 0010
R-type 100 subtract 100010 subtract 0110
R-type 100 subtract uns 100011 subtract 0110

This table was referenced constantly in creating the code for the entity, which was named
“alu32control.” In all cases except for that of “R-type” instructions, the ALU opcode was all that was
needed to determine the ALU control signal. For “R-type” instructions, the instruction opcode was
needed as well.

The following code was used to implement “alu32contol.”

-- Bob Minchin
-- EEL 4713C
-- Homework 3
-- Part 3.3: 32-Bit ALU Controller

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY alu32control IS
 --6-bit instruction opcode input
 --5-bit ALU opcode input
 --4-bit ALU control signal output
 PORT (func : IN STD_LOGIC_VECTOR(5 DOWNTO 0) ;
 ALUop : IN STD_LOGIC_VECTOR(2 DOWNTO 0) ;
 control : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;
END alu32control ;

ARCHITECTURE Structure OF alu32control IS
BEGIN

 PROCESS(func, ALUop)
 BEGIN
 CASE ALUop IS
 WHEN "100" => --r-type
 CASE func IS
 WHEN "100000" => --add
 control <= "0010" ;
 WHEN "100001" => --add unsigned
 control <= "0010" ;
 WHEN "100100" => --and
 control <= "0000" ;
 WHEN "100111" => --nor
 control <= "1100" ;
 WHEN "100101" => --or
 control <= "0001" ;
 WHEN "101010" => --set less than
 control <= "0111" ;
 WHEN "101011" => --set less than unsigned
 control <= "1111" ;
 WHEN "000000" => --shift left logical
 control <= "0011" ;
 WHEN "000010" => --shift right logical
 control <= "0011" ;
 WHEN "100010" => --subtract
 control <= "0110" ;
 WHEN "100011" => --subtract unsigned
 control <= "0110" ;
 WHEN OTHERS =>
 END CASE ;
 WHEN "000" => --add immediate
 control <= "0010" ;
 WHEN "011" => --and immediate
 control <= "0000" ;
 WHEN "001" => --branch
 control <= "0110" ;
 WHEN "010" => --or immediate
 control <= "0001" ;
 WHEN "101" => --set less than
 control <= "0111" ;
 WHEN "110" => --set less than unsigned
 control <= "1111" ;
 WHEN OTHERS =>
 END CASE ;
 END PROCESS ;
END Structure ;

The simulation waveforms can be seen as follows.

The device performed as expected.

The final device for this project was a register file called “registerFile.”. The register file contains all 32
internal registers for the MIPS microprocessor. Each register in the register file is multiplexed at the
input and the output to determine which muxes are written to and/or read from on any given operation.
Two registers can be read from at once, while only one register can be written to. This allows register-
register operations, where both inputs come simultaneously from separate registers, and the output is
written to a third. Because the zero register cannot be written to, no control logic was created for its
modification. Any attempt to write over its default value of zero will be ignored.

The device was implemented using the 32-bit register module, “reg32,” created in Assignment 2. The
device was multiplexed internally, and the control logic for the write enables also was handled internally.
Thus, the only modular component used was “reg32.” This was not an inefficient implementation in
terms of architecture, but whether the coding would have gone faster had I used a 2-D array is subject
to debate. But I’ll leave that one to the philosophers.

One other thing worth noting is that in its current form, the device performs on a purely synchronous
basis. In future use, the rising-clock synchronization of the register file outputs will probably be replaced
by an asynchronous realization that changes the output as soon as the read register control input
changes.

Due to its length, the code for “registerFile” can be found in Appendix B. The simulation waveforms are
as follows.

The device performs as expected.

APPENDIX A: Textbook Problems (From the UNrevised Edition)

4.2.1) a) From the components in Figure 4.2, this instruction will use the PC, the instruction memory,
the register file (both read ports and the write port), and the ALU.

 b) Again from Figure 4.2, this instruction will use the PC, the instruction memory, the register
file (one read port and the write port), and the mux between the instruction memory and the ALU.

4.2.2) a) This instruction will need a third register read port and a third ALU input port.

 b) This instruction will need a shifting module, which probably should be placed in the ALU.

4.2.3) a) This instruction will need an additional ALU control signal that would correspond to a 3-input
addition.

 b) This instruction will need a ALU new control signal as well.

4.8.1) a) This bit is used only for shift amount (R-type) or constant/address value (I-type). One way
would be to load a known value into a register and write it to address 0x110000000. If this value
appears instead in address 0x100000000, then the bit is stuck at zero.

 b) This signal is used only when loading data from memory. If it is stuck at zero, then the ouput
of the ALU will be read instead of the memory. So one solution would be to write a certain number to
memory and then attempt to load a register from that location in memory, referenced by a lower
memory value with an offset, which must be different from the value in memory. The output of the ALU
will be the offset, so if the register is loaded with this value after execution, then the signal is stuck on
zero.

4.8.2) a) The same test as above could be used (using the memory values in opposite roles), or an ORI
with 0000 and the zero register could be executed. If bit 7 of the result is 1, then the signal is stuck at 1.

 b) The test above can’t be used because there would be no way to know whether anything read
from memory was already there or not. However, if this signal is stuck at 1, then it will not be possible
to read from the ALU output. Any simple ALU operation would not assert this signal, so if a register’s
value does not reflect the output of the ALU, then the signal is stuck.

4.8.3) a) Yes. There is always more than one way to skin a cat when it comes to constants and offsets.
This would require some more shifting around and some creative use of registers, but you could make it
work.

 b) No. If a register can’t read from the ALU output, then nothing useful can be done.

APPENDIX B: Code for “registerFile”

-- Bob Minchin
-- EEL 4713C
-- Homework 3
-- Part 3.4: 32-Bit, 32-Register File

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY registerFile IS
 --32-bit input, output

--5-bit mux signals
--1-bit clock, write enable

 PORT (rr0, rr1, rw : IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
 d : IN STD_LOGIC_VECTOR(31 DOWNTO 0) ;
 clk, wr : IN STD_LOGIC ;
 q0, q1 : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)) ;
END registerFile ;

ARCHITECTURE Structure OF registerFile IS
 --Temporary signals between output of registers and output of device
 --Arrays would have been better
 SIGNAL out00, out01, out02, out03, out04, out05, out06, out07, out08,
 out09, out10, out11, out12, out13, out14, out15, out16, out17,
 out18, out19, out20, out21, out22, out23, out24, out25, out26,
 out27, out28, out29, out30, out31 : STD_LOGIC_VECTOR(31 DOWNTO

0) ;
 --Individual write enables for the 32 muxes
 SIGNAL wr01, wr02, wr03, wr04, wr05, wr06, wr07, wr08, wr09, wr10, wr11,
 wr12, wr13, wr14, wr15, wr16, wr17, wr18, wr19, wr20, wr21, wr22,
 wr23, wr24, wr25, wr26, wr27, wr28, wr29, wr30, wr31 :
STD_LOGIC ;
 --“reg32” component from Assignment 2
 COMPONENT reg32 IS
 PORT (D : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
 Clk, Wr, Clr : IN STD_LOGIC ;
 Q : OUT STD_LOGIC_VECTOR(31 DOWNTO
 0)) ;
 END COMPONENT ;
BEGIN
 PROCESS(rr0, clk)
 BEGIN
 --Control logic for output 1
 IF clk'EVENT AND clk = '1' THEN
 CASE rr0 IS
 WHEN "00000" => q0 <= out00 ;
 WHEN "00001" => q0 <= out01 ;
 WHEN "00010" => q0 <= out02 ;
 WHEN "00011" => q0 <= out03 ;
 WHEN "00100" => q0 <= out04 ;
 WHEN "00101" => q0 <= out05 ;
 WHEN "00110" => q0 <= out06 ;
 WHEN "00111" => q0 <= out07 ;
 WHEN "01000" => q0 <= out08 ;

 WHEN "01001" => q0 <= out09 ;
 WHEN "01010" => q0 <= out10 ;
 WHEN "01011" => q0 <= out11 ;
 WHEN "01100" => q0 <= out12 ;
 WHEN "01101" => q0 <= out13 ;
 WHEN "01110" => q0 <= out14 ;
 WHEN "01111" => q0 <= out15 ;
 WHEN "10000" => q0 <= out16 ;
 WHEN "10001" => q0 <= out17 ;
 WHEN "10010" => q0 <= out18 ;
 WHEN "10011" => q0 <= out19 ;
 WHEN "10100" => q0 <= out20 ;
 WHEN "10101" => q0 <= out21 ;
 WHEN "10110" => q0 <= out22 ;
 WHEN "10111" => q0 <= out23 ;
 WHEN "11000" => q0 <= out24 ;
 WHEN "11001" => q0 <= out25 ;
 WHEN "11010" => q0 <= out26 ;
 WHEN "11011" => q0 <= out27 ;
 WHEN "11100" => q0 <= out28 ;
 WHEN "11101" => q0 <= out29 ;
 WHEN "11110" => q0 <= out30 ;
 WHEN "11111" => q0 <= out31 ;
 WHEN OTHERS =>
 END CASE ;
 END IF ;
 END PROCESS ;
 PROCESS(rr1, clk)
 BEGIN
 --Control logic for output 2
 IF clk'EVENT AND clk = '1' THEN
 CASE rr1 IS
 WHEN "00000" => q1 <= out00 ;
 WHEN "00001" => q1 <= out01 ;
 WHEN "00010" => q1 <= out02 ;
 WHEN "00011" => q1 <= out03 ;
 WHEN "00100" => q1 <= out04 ;
 WHEN "00101" => q1 <= out05 ;
 WHEN "00110" => q1 <= out06 ;
 WHEN "00111" => q1 <= out07 ;
 WHEN "01000" => q1 <= out08 ;
 WHEN "01001" => q1 <= out09 ;
 WHEN "01010" => q1 <= out10 ;
 WHEN "01011" => q1 <= out11 ;
 WHEN "01100" => q1 <= out12 ;
 WHEN "01101" => q1 <= out13 ;
 WHEN "01110" => q1 <= out14 ;
 WHEN "01111" => q1 <= out15 ;
 WHEN "10000" => q1 <= out16 ;
 WHEN "10001" => q1 <= out17 ;
 WHEN "10010" => q1 <= out18 ;
 WHEN "10011" => q1 <= out19 ;
 WHEN "10100" => q1 <= out20 ;
 WHEN "10101" => q1 <= out21 ;
 WHEN "10110" => q1 <= out22 ;
 WHEN "10111" => q1 <= out23 ;
 WHEN "11000" => q1 <= out24 ;

 WHEN "11001" => q1 <= out25 ;
 WHEN "11010" => q1 <= out26 ;
 WHEN "11011" => q1 <= out27 ;
 WHEN "11100" => q1 <= out28 ;
 WHEN "11101" => q1 <= out29 ;
 WHEN "11110" => q1 <= out30 ;
 WHEN "11111" => q1 <= out31 ;
 WHEN OTHERS =>
 END CASE ;
 END IF ;
 END PROCESS ;
 PROCESS(rw, wr)
 BEGIN
 --all write enable initialized to 0
 wr01 <= '0' ;
 wr02 <= '0' ;
 wr03 <= '0' ;
 wr04 <= '0' ;
 wr05 <= '0' ;
 wr06 <= '0' ;
 wr07 <= '0' ;
 wr08 <= '0' ;
 wr09 <= '0' ;
 wr10 <= '0' ;
 wr11 <= '0' ;
 wr12 <= '0' ;
 wr13 <= '0' ;
 wr14 <= '0' ;
 wr15 <= '0' ;
 wr16 <= '0' ;
 wr17 <= '0' ;
 wr18 <= '0' ;
 wr19 <= '0' ;
 wr20 <= '0' ;
 wr21 <= '0' ;
 wr22 <= '0' ;
 wr23 <= '0' ;
 wr24 <= '0' ;
 wr25 <= '0' ;
 wr26 <= '0' ;
 wr27 <= '0' ;
 wr28 <= '0' ;
 wr29 <= '0' ;
 wr30 <= '0' ;
 wr31 <= '0' ;
 CASE rw IS
 --control logic for write enables
 WHEN "00001" =>
 IF wr = '1' THEN wr01 <= '1' ;
 END IF ;
 WHEN "00010" =>
 IF wr = '1' THEN wr02 <= '1' ;
 END IF ;
 WHEN "00011" =>
 IF wr = '1' THEN wr03 <= '1' ;
 END IF ;
 WHEN "00100" =>

 IF wr = '1' THEN wr04 <= '1' ;
 END IF ;
 WHEN "00101" =>
 IF wr = '1' THEN wr05 <= '1' ;
 END IF ;
 WHEN "00110" =>
 IF wr = '1' THEN wr06 <= '1' ;
 END IF ;
 WHEN "00111" =>
 IF wr = '1' THEN wr07 <= '1' ;
 END IF ;
 WHEN "01000" =>
 IF wr = '1' THEN wr08 <= '1' ;
 END IF ;
 WHEN "01001" =>
 IF wr = '1' THEN wr09 <= '1' ;
 END IF ;
 WHEN "01010" =>
 IF wr = '1' THEN wr10 <= '1' ;
 END IF ;
 WHEN "01011" =>
 IF wr = '1' THEN wr11 <= '1' ;
 END IF ;
 WHEN "01100" =>
 IF wr = '1' THEN wr12 <= '1' ;
 END IF ;
 WHEN "01101" =>
 IF wr = '1' THEN wr13 <= '1' ;
 END IF ;
 WHEN "01110" =>
 IF wr = '1' THEN wr14 <= '1' ;
 END IF ;
 WHEN "01111" =>
 IF wr = '1' THEN wr15 <= '1' ;
 END IF ;
 WHEN "10000" =>
 IF wr = '1' THEN wr16 <= '1' ;
 END IF ;
 WHEN "10001" =>
 IF wr = '1' THEN wr17 <= '1' ;
 END IF ;
 WHEN "10010" =>
 IF wr = '1' THEN wr18 <= '1' ;
 END IF ;
 WHEN "10011" =>
 IF wr = '1' THEN wr19 <= '1' ;
 END IF ;
 WHEN "10100" =>
 IF wr = '1' THEN wr20 <= '1' ;
 END IF ;
 WHEN "10101" =>
 IF wr = '1' THEN wr21 <= '1' ;
 END IF ;
 WHEN "10110" =>
 IF wr = '1' THEN wr22 <= '1' ;
 END IF ;
 WHEN "10111" =>

 IF wr = '1' THEN wr23 <= '1' ;
 END IF ;
 WHEN "11000" =>
 IF wr = '1' THEN wr24 <= '1' ;
 END IF ;
 WHEN "11001" =>
 IF wr = '1' THEN wr25 <= '1' ;
 END IF ;
 WHEN "11010" =>
 IF wr = '1' THEN wr26 <= '1' ;
 END IF ;
 WHEN "11011" =>
 IF wr = '1' THEN wr27 <= '1' ;
 END IF ;
 WHEN "11100" =>
 IF wr = '1' THEN wr28 <= '1' ;
 END IF ;
 WHEN "11101" =>
 IF wr = '1' THEN wr29 <= '1' ;
 END IF ;
 WHEN "11110" =>
 IF wr = '1' THEN wr30 <= '1' ;
 END IF ;
 WHEN "11111" =>
 IF wr = '1' THEN wr31 <= '1' ;
 END IF ;
 WHEN OTHERS =>
 END CASE ;
 END PROCESS ;

 Reg00 : reg32 PORT MAP (d, clk, '0', '1', out00) ;
 Reg01 : reg32 PORT MAP (d, clk, wr01, '1', out01) ;
 Reg02 : reg32 PORT MAP (d, clk, wr02, '1', out02) ;
 Reg03 : reg32 PORT MAP (d, clk, wr03, '1', out03) ;
 Reg04 : reg32 PORT MAP (d, clk, wr04, '1', out04) ;
 Reg05 : reg32 PORT MAP (d, clk, wr05, '1', out05) ;
 Reg06 : reg32 PORT MAP (d, clk, wr06, '1', out06) ;
 Reg07 : reg32 PORT MAP (d, clk, wr07, '1', out07) ;
 Reg08 : reg32 PORT MAP (d, clk, wr08, '1', out08) ;
 Reg09 : reg32 PORT MAP (d, clk, wr09, '1', out09) ;
 Reg10 : reg32 PORT MAP (d, clk, wr10, '1', out10) ;
 Reg11 : reg32 PORT MAP (d, clk, wr11, '1', out11) ;
 Reg12 : reg32 PORT MAP (d, clk, wr12, '1', out12) ;
 Reg13 : reg32 PORT MAP (d, clk, wr13, '1', out13) ;
 Reg14 : reg32 PORT MAP (d, clk, wr14, '1', out14) ;
 Reg15 : reg32 PORT MAP (d, clk, wr15, '1', out15) ;
 Reg16 : reg32 PORT MAP (d, clk, wr16, '1', out16) ;
 Reg17 : reg32 PORT MAP (d, clk, wr17, '1', out17) ;
 Reg18 : reg32 PORT MAP (d, clk, wr18, '1', out18) ;
 Reg19 : reg32 PORT MAP (d, clk, wr19, '1', out19) ;
 Reg20 : reg32 PORT MAP (d, clk, wr20, '1', out20) ;
 Reg21 : reg32 PORT MAP (d, clk, wr21, '1', out21) ;
 Reg22 : reg32 PORT MAP (d, clk, wr22, '1', out22) ;
 Reg23 : reg32 PORT MAP (d, clk, wr23, '1', out23) ;
 Reg24 : reg32 PORT MAP (d, clk, wr24, '1', out24) ;
 Reg25 : reg32 PORT MAP (d, clk, wr25, '1', out25) ;
 Reg26 : reg32 PORT MAP (d, clk, wr26, '1', out26) ;

 Reg27 : reg32 PORT MAP (d, clk, wr27, '1', out27) ;
 Reg28 : reg32 PORT MAP (d, clk, wr28, '1', out28) ;
 Reg29 : reg32 PORT MAP (d, clk, wr29, '1', out29) ;
 Reg30 : reg32 PORT MAP (d, clk, wr30, '1', out30) ;
 Reg31 : reg32 PORT MAP (d, clk, wr31, '1', out31) ;

END STRUCTURE ;

