Bob Minchin
EEL4713C
Assignment 3

February 13, 2012

INTRODUCTION

The purposes of this assignment were (1) to become further acquainted with the MIPS architecture by
going through a bug-finding exercise in processor simulation and (2) to reinforce some of the basic
principles covered in class by guiding the student through designing some more basic components that
will be needed to build into a microprocessor pipeline later in the semester. A basic adder, a MIPS ALU,
an ALU controller, and a register file were assigned, and each was designed and simulated according to
the directions.

MIPS BUG SIMULATION (“BUGSPIM”)

The purpose of this exercise was to identify five bugs in a MIPS simulation program based on knowledge
of how the MIPS architecture operates. Although the directions seemed straightforward, several
problems were encountered when trying to complete this part of the assignment. First was my difficulty
getting Bugspim to start without the instruction to load it directly into the SPIM directory. Then there
was my complete lack of familiarity with how to work within Grid Appliance/Linux. | had to figure out
everything from how to edit text to how the file path structure worked. Finally, it took me a long time
to figure out that the same lines of code are executed at the beginning of every program and that my
attempts to load custom code into the simulator were actually successful.

After overcoming all of these problems, | did not have much time left to actually perform the simulation.
In order to determine which instructions created problems, | ran the following instructions numerous
times in various different contexts: ADD, ADDI, ADDU, ADDUI, AND, ANDI, BNE, DIV, DIVU, J, JR, LB, LUI,
LW, MFHI, MFLO, MULT, MULTU, OR, ORI, SB, SLL, SLT, SLTI, SLTIU, SLTU, SRL, SUB, SUBU, SW, XOR, and
XORI. However, | was able to locate only one bug, which was as follows.

The instruction “load upper immediate” (lui) does not work. It is designed to take in a 16-bit number
and place it in the upper half of the register. The following code was executed:

lui $t0, 65535

This should have resulted in $t0 = OxFFFFO000. Instead, it resulted in $t0 = OxO000FFFF, which means
that the load was accomplished but the shift was not.

DESIGN AND TESTING

The first device to design was a simple 32-bit adder that was named “add32.” It was designed by simply
taking two signals and applying an arithmetic add operation, which was accomplished using the
following code.

-- Bob Minchin

-- EEL 4713C

-- Homework 3

-- Part 3.1: 32-Bit Adder

LIBRARY ieee ;

USE 1eee.std_logic_1164.all ;
USE i1eee.std_logic_arith.all ;
USE ieee.std_logic_unsigned.all ;

ENTITY add32 1S
--32-bit inputs, output

PORT (in0, inl : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
sum : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)) ;
END add32 ;
ARCHITECTURE Structure OF add32 1S
BEGIN
sum <= In0 + inl ; --Inputs added, output results

END Structure ;

The following are screenshots of the simulation of this device.

1A add32 v |
El Master Time Bar: 17.225 ng j_’l Painter: | 364 nz Interval: 1918 ne Start: End: ’_
|T ps ‘I[HI] ns ZDP ns 3[H|] ns -ﬁ]il] ns EDP ns GDP ns T-"D.P ns MP ns BDP ns ‘IDDiD ns 11DiD ns ‘IZDiD ns ‘IBDiD ns ‘I-ﬁ]iﬂ ns 151]i|

17.225ns

A]

<6 (@50 in0 532056622 b -76153043 b4 -1054213708 X
@\ 33 in1 1352350404 b -1150813151 b 1873508628 X
— |66 sum 1884407026 b4 -1226966154 b4 819254520 X
Both inputs are 2]s comp posifive numbers | |Ecth inputs are 2's comp negative numbers | One input is a 25 comp pesitive number, the
H other is 2 2's comp negative number

1] add32. vwf |

Master Time Bar: 17,225 ns 4| >| Paointer: | 190.0 ns Interyval: 17278 nz
i 160.0ns 180.0 s 2000ns 2200ns 240.0ns

A

e |0 in0 SO0F4BAT2 i FFFFFFFF ¥
@ >33 int DBFATTZC i FFFFFFFF 4
— (|66 sum 99EECE3E Y FFFFFFFE W
Both inputs are unsigned numbers | |E¢ﬂ1 inputs are "FFFFFFFF? |
A4

1] add3z.vwi |
@ aster Time B ar: 17. 228 ns E@ 1| >| Painter: | 2518 ns Interval: 23458 nz
T 260.0ns 280.0ns 3000ns 3200ns 3400 s
A

o5 |0 in0 00000000 by BO000000)(:
@\ B33 in 00000000 b 80000000)(:
— || 5266 sum 00000000

Both inputs are "00000000" | |E¢th inputs are "S0000000" |
Y

The device performed as expected.

The next device was a 32-bit ALU, which eventually will be at the heart of all MIPS operations. The
purpose of this device is to perform basic arithmetic and logic operations on numbers in internal
registers that will be used to execute more complex operations in the computer architecture.

The code used for the overflow flag was quick and dirty—sort of a “brute force” solution that requires
an additional add every time an add or subtract operation is requested. This is an inefficient design that
works for our current purposes but will likely need to be replaced by another solution, such as a ripple-
carry adder, once timing and efficiency become important.

Furthermore, the ALU was implemented as an “all-in-one” device. No modularity was implemented. All
functions were performed internally. As the device is refined, more refined methods of implementation
may be built in to help facilitate greater efficiency.

This ALU, “alu32,” was accomplished with the following code.

-- Bob Minchin

-- EEL 4713C

-- Homework 3

-—- Part 3.2: 32-Bit ALU

LIBRARY ieee ;

USE ieee.std logic 1164 ._all ;

USE ieee.std logic arith.all ;
USE ieee.std logic unsigned.all ;

ENTITY alu32 1S
--32-bit inputs, output
--4-bit control input
--5-bit ALUOp input, shift amount input
--1-bit shift direction input, output flags

PORT (ia, ib : IN STD _LOGIC_VECTOR(31 DOWNTO 0) ;
control : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;
shamt : IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
shdir : IN STD_LOGIC ;

o : BUFFER STD_LOGIC_VECTOR(31 DOWNTO 0) ;
C, Z, S, V : OUT STD_LOGIC) ;

END alu32 ;

ARCHITECTURE Structure OF alu32 1S
SIGNAL temp33 : STD_LOGIC_VECTOR(32 DOWNTO 0) ;

BEGIN
PROCESS(i1a, ib, control, shamt, shdir, temp33, 0)
VARIABLE temp32 : unsigned(31 DOWNTO 0) ;
BEGIN
C <= "0" ; --initialize flags
V <= 0" ;
IF o = x"00000000* THEN

Z <= "1" ;

ELSE Z <= "0" ;

END IF ;

IF 0(31) = "1" THEN
S <= .1. ;

ELSE S <= "0" ;

END IF ;

CASE control 1S
WHEN "0000" => --and
0 <= ia AND ib ;
WHEN "'0001" => --or
0o <= ia OR ib ;
WHEN '0010" => --add
temp33 <= ("0 & 1a) + ("0" & ib) ;
temp32 = UNSIGNED(("0" & i1a(30 DOWNTO 0))) +
UNSIGNED(("0" & 1b(30 DOWNTO 0))) ;
V <= temp33(32) XOR temp32(3l1) ;
C <= temp33(32) ;
0 <= temp33(31 DOWNTO 0) ;
WHEN ''0011" => --shift logical
IF (shdir = "0") THEN
temp32 := SHL(UNSIGNED(ib),
UNSIGNED(shamt)) ;
ELSE
temp32 := SHR(UNSIGNED(ib),
UNSIGNED(shamt)) ;
END IF ;
0 <= CONV_STD LOGIC_VECTOR(temp32, 32) ;
WHEN *0110" => --subtract
temp33 <= ("0" & ia) + (NOT ("1" & ib)) + 1 ;
temp32 := UNSIGNED(("0" & 1a(30 DOWNTO 0))) +
UNSIGNED(("0" & ib(30 DOWNTO 0))) ;
V <= temp33(32) XOR temp32(31) ;
C <= temp33(32) ;
0 <= temp33(31 DOWNTO 0) ;
WHEN "0111" => --set less than
IF (SIGNED(#a) < SIGNED(ib)) THEN
0 <= x''00000001" ;
ELSE o <= x"00000000" ;
END IF ;
WHEN *1100" => --nor
0 <= NOT (ia OR ib) ;
WHEN *"1111" => --set less than unsigned
IF (UNSIGNED(ia) < UNSIGNED(ib)) THEN
0 <= Xx'"00000001" ;
ELSE o <= x"00000000" ;
END IF ;
WHEN OTHERS =>
END CASE ;
END PROCESS ;
END Structure ;

The following are screenshots of the simulation that illustrate each of the ALU operations.

£ sluzzvhd | i alu3z vw |
EZ] | Master Time Bar: 17.225 ns J_’l Painter: | B2ns Interval: 1203 ns Start: | End:
m ps ‘ID.P ns ZDP ns EH]P ns -ﬂ]ll] ns SDP ns GDP ns TD.P ns BDP ns BDP ns 1DDiD ns 11Diﬂ ns 120iﬂ ns ‘IEH]iD ns Hﬂiﬂ ns ‘|5’|Z|i
17.225ns
A]
s =0 control 0000 b 0001 Y 0010 Y
@\ 5 shdir
— |6 shamt 0Tim Y 1007 Y 7707 Y
12 ia 011171100071070700010000717701110 % 11001100007070111011071110000000 ¥ 11109111101111000700111100011107)
a4 45 ib 011071111041011101001110000100100 b 100010700711:170010007 00100110001 b 000710000000011110000101100010110 y
) o 78 o 01107111001010100000000000100100 H 11001110071111111011111110110001 b 11111111110010110701201000110011 H
il YT v
W @12 z
35 [epi13 C
o |[=P114 5 |
= ‘when "cantrol” 5 0000, the ALU performs ‘when "centrol” = 0001, the ALU performs ‘when "cantrol” = 0010, the ALU performs
JlL a logical AWD. 3 logical OR. MNotel that the sign flag is an arithmetic sum.
= enzbled because the MSE = 1.
=
£ auzzuhd | 1) alu32.vwt |
Master Time Bar: 17.225 ns J_'l Painter: | 149.54 nz Interal: 13232 ns Start: | Erd:
[k BP.D ns 161]i1]n5 'I?Diﬂ ns muiu ns TBDi
A
2 w0 control iy 0011
,@ w5 shdir |
— &6 shamt [0y 0T b 01010 b 11001 b 111 %
12 ia Py 11070000707 11010700 00100100711
& 45 ib I 00707071177000001707071700700007
ar 278 a 1000000710101 110010000 100000000000, 1000001 1010711 100100007 0000000000 1 010000710000000000000000000000000 1 T0000000000000000000000000000000
il FTT v
1O =112 z | L
2 |ep113 C
i E= A 5 1 |
1:‘— |".'.-'hc'n "control” = 0011, the device performs a logical shift in the direction given in "shdir” and by the amount given in "shamt.
J;L Note that the Z flag pops up when the
— resultis 0.
e alu32 vhd | 1 alu32.vwi
@ taster Time Bar: 17.225 ng *I b| Painter: | 38219 ns Interzal; | 364,97 ns Start:
[:3 Ons 320,0ns 340,0ns 360,0ns 380,0ns 400,0 ns
b ||me0 control K 0110 ¥ 0111 W
@\ 5 shdir |
— |6 shamt K 00110 y 10011 W
=12 ia K 00110001110701111111701001111000 ¥ 1001111011110110101001001 11100001)q:
4 45 ib K 110711011001 11100010001 1110110100 iy 010100101101011001001 10001111000 "
an o 78 o K 01070110100110111011001011000100 i O00R00DD000o0RD00D00OD000000DR001T "
il PSR v |
4T 112 z
e
A o 113 C
o ||e#114 5
gy — = ——— = — = — =
0 ‘when "control” = 0710, the device performs ‘when "cantrol” = 0111, the device performs
L an arithmetic subtraction. set-on-less-than operation. Because "id" is
= e=s than!"ib," "¢ 15 setto 1.
|
L =

)

e alu32 vhd | il alu32.vwt
E=] | Master Time Bar: 17.225 nz j_'l Painter: | 74279 nz ! ! !
[% 0.0ns 620,0ns 640,0ns
il C
A
w5 |mF0 cortrol Py 1100 W T 30070 v
5 hdi
@ =6 Sh :11 T 57000 Vi 000100710100010010000000011 110011 W
— 3nal
12 ia iy 01000100000011111011011110000111 i 00160000011 1000010101011 1101070 E
34 (345 b PT)_ 00001000100111701100100707 110011) 00030000000000000000000000000001 3
Az o 78 0 iy 10110011011000000000000000001000 i
il FEYTY v
7 w112 z —
X =113 C
40 E T 5 | | [when "contral” = 1117, the device performs an
q When "control” = 1100, the device performis a logical unsigned sei-on-less-than operation. Becguse "ia" is
L NOR operation. less than "ih,” "o" i= set to 1.
Z

The device performed as expected.

The next part was a controller for this ALU. The job of the controller is to decode the instruction
operand into a set of instructions for the ALU. Because there are a number of instructions that require

the ALU to perform the same operation, this device simply needs to convert the relevant parts of the
machine code into an internal signal that will tell the ALU what it needs to do. Basically, it is a glorified
look-up table.

The first step was to create a physical look-up table that included all the MIPS instructions and their
corresponding ALU operations. Once the instructions and operations were delineated, three-bit ALU

operation codes were assigned to each instruction. If multiple instructions needed the same function

performed in the ALU, they were given the same ALU operation code.

The table that was created can be seen below.

Instruction
Opcode

R-type
001000
001001

R-type

R-type
001100
000100
000101
000010
000011

R-type
100100

ALUop

100
000
000
100
100
011
001
001

100
000

Instruction Operand

add
add imm
add imm uns
add uns
and
and imm
branch on equal
branch on not equal
jump
jump and link
jump reg
load byte uns

Funct
Field

100000

100001
100100

001000

Desired ALU Action ALU
Control

Input

add 0010
add 0010
add 0010
add 0010
and 0000
and 0000
subtract 0110
subtract 0110
add 0010

100101 000 load hw uns add 0010

110000 000 load linked add 0010
001111 000 load upper imm add 0010
100011 000 load word add 0010
R-type 100 nor 100111 nor 1100
R-type 100 or 100101 or 0001
001101 010 orimm or 0001
R-type 100 set less than 101010 set less than 0111
001010 101 set less than imm set less than 0111
001011 110 set less than imm uns set less than uns 1111
R-type 100 set less than uns 101011 set less than uns 1111
R-type 100 shift left log 000000 shift log 0011
R-type 100 shift right log 000010 shift log 0011
101000 000 store byte add 0010
111000 000 store cond add 0010
101001 000 store hw add 0010
101011 000 store word add 0010
R-type 100 subtract 100010 subtract 0110
R-type 100 subtract uns 100011 subtract 0110

This table was referenced constantly in creating the code for the entity, which was named
“alu32control.” In all cases except for that of “R-type” instructions, the ALU opcode was all that was
needed to determine the ALU control signal. For “R-type” instructions, the instruction opcode was
needed as well.

|II

The following code was used to implement “alu32conto

-— Bob Minchin

-- EEL 4713C

-- Homework 3

-- Part 3.3: 32-Bit ALU Controller

LIBRARY ieee ;
USE ieee.std logic 1164 ._all ;

ENTITY alu32control 1S
--6-bit iInstruction opcode input
--5-bit ALU opcode input
--4-bit ALU control signal output
PORT (func : IN STD_LOGIC_VECTOR(5 DOWNTO 0) ;
ALUop : IN STD_LOGIC_VECTOR(2 DOWNTO 0) ;
control : OUT STD _LOGIC_VECTOR(3 DOWNTO 0)) ;
END alu32control ;

ARCHITECTURE Structure OF alu32control IS
BEGIN

PROCESS(func, ALUop)
BEGIN
CASE ALUop IS
WHEN "*100" => --r-type
CASE func IS

WHEN "*100000"" => --add
control <= "0010" ;

WHEN ""100001" =>--add unsigned
control <= "0010" ;

WHEN '"100100" => --and
control <= "0000" ;

WHEN *""100111" =>--nor
control <= "1100" ;

WHEN *"100101" =>--or
control <= "0001" ;

WHEN ""101010" =>--set less than
control <= "0111" ;

WHEN ""101011" =>--set less than unsigned
control <= "1111" ;

WHEN *'000000" =>--shift left logical
control <= "0011" ;

WHEN *000010" =>--shift right logical
control <= "0011" ;

WHEN "'100010" =>--subtract
control <= "0110" ;

WHEN "100011" =>--subtract unsigned
control <= "0110" ;

WHEN OTHERS =>

END CASE ;

WHEN "'000"" => --add immediate
control <= "0010" ;

WHEN "'011" => -—-and immediate
control <= "0000" ;

WHEN ''001" => --branch
control <= "0110" ;

WHEN "'010" => --or immediate
control <= "0001" ;

WHEN "101" => --set less than
control <= "0111" ;

WHEN *'110" => --set less than unsigned

control <= "1111" ;
WHEN OTHERS =>
END CASE ;
END PROCESS ;
END Structure ;

The simulation waveforms can be seen as follows.

ﬁ alu32control ywf

a@}’ alu32control. vhd

@ aster Time Bar: 17.525 ng 'l 'l Paititer: | 174.7 nz Irkerval: 15718 ns Start: |
% ps -H]lI] ns Bﬂp ns 'IZ{Iiﬂ ns 'Iﬁﬂiﬂ ns QDDiﬂ ns 24Diﬂ ns QRDiD ns
17.525ns

A i

s ||BF0 AlUop 000 by i by 0i0 by o7l by 107 by 110 b4
@ (|24 func 000000
— = control [Tl iy 010 0001 000d 011 117
AllUop = (K0 AlUop =01 AlUop =010 AlUop =01 AlUop =101 Allop =110
— refers) to an add. refers fo 5 refers fo an or. refers to an and. refers to an slt. refers to an sl
ah subtract.

an

@ alu32Zcontrol. vwf I a@c alu3zcontral vhd |
@ Master Time Bar: 17.525 ng ‘l >| Pointer: | 78748 ne Interval: 769.96 ns Start: | End: |_
T 50.0ns 330.0ns 4300ns 470,0ns 5100ns 350.0ns 590.0ns 6300ns 6700ns |
A

& |30 ALUop 100
@\ 4 func 100000 b 100001 b 100100 b 100111 b 100101 M 101010 b 101011 M
— &1 control [oo10 Y o000 Y 100 y o001 v T Y T b
|.1'«n ALU ¢pcade of 100 refers to R-type instructions, which als¢ need the instruction optode to generate a unigue ALL contral signal | |
h 100000 refers 100001 refers 100100 refers 100111 refers 100107 refers 101010 refers 101017 refers
o to an add. to an addu. tolan and. to & nor. to an or. to an sit. to an sltu.

LB

The device performed as expected.

The final device for this project was a register file called “registerFile.”. The register file contains all 32
internal registers for the MIPS microprocessor. Each register in the register file is multiplexed at the
input and the output to determine which muxes are written to and/or read from on any given operation.
Two registers can be read from at once, while only one register can be written to. This allows register-
register operations, where both inputs come simultaneously from separate registers, and the output is
written to a third. Because the zero register cannot be written to, no control logic was created for its
modification. Any attempt to write over its default value of zero will be ignored.

The device was implemented using the 32-bit register module, “reg32,” created in Assignment 2. The
device was multiplexed internally, and the control logic for the write enables also was handled internally.
Thus, the only modular component used was “reg32.” This was not an inefficient implementation in
terms of architecture, but whether the coding would have gone faster had | used a 2-D array is subject

to debate. But I'll leave that one to the philosophers.

One other thing worth noting is that in its current form, the device performs on a purely synchronous
basis. In future use, the rising-clock synchronization of the register file outputs will probably be replaced
by an asynchronous realization that changes the output as soon as the read register control input
changes.

Due to its length, the code for “registerFile” can be found in Appendix B. The simulation waveforms are
as follows.

3@0 registerFile. vhd

| 'I:a registerFile. wwf |

@ Master Time B ar: 17.225 ne 1| +| Painter: | 260.89 nz Interval: 24367 nz Start: | End:
m ps Zﬂp ns -mp ns GCHI] ns 5DP ns ‘IDDiD ns ‘IZDiD ns Hﬂiﬂ ns 16ﬂiD ns 15|]iD ns ZDDiD ns
17.225ns

A o
g2 ||m=0 clke | | I L | I S L
@, i1 md 2 b 1 by 12)
B = - B i 0 h{ iE] i
13 e 12 H o L
i (|19 wr | | —
an |[F20 d AFSAC335 M FES04ABA b 0D00D000 4

" @52 q0 00000000 e FES04ABA
0 |[&pes al
m’fx On the first two clock cycles, thelwrite enable is 0. soino writing F!eg_istela 12 and _1 9 are once

is accomplished. "g0" and "g1" réflect the default empty state againread, but this time
BUN of registery 12 and 19, respectively. :) regi 2 containg the number
Meaniwhile, register 0is being that was written to it in theithird

JlL read on both outputs. clockicycle.

3@3 regizterFile. vhd

| '@ registerFile. vwf

bl azter Time Bar:

17225 nz 4| >| Painter: | 4596 ng |rteral: 442 38

E'H]iﬂ ns EE'DiD ns Eﬁlﬂiﬂ ns E?Diﬂ ns Zﬂﬂiﬂ ns 31Diﬂ ns 3

3
A
w0 (im0
&, |2
i 13
8 [19
sz (220
kb ﬁﬁﬂ
U | se
-
bt
o
T
1

ik
[
E m
E rw

Wr
H d
[q0
[g1

1 1 T

0 3 iE]
b 12
A
I

e

15
248750FC by
FES04ABA. 00000000 b 248750FC){
00000000 }{ FESOLABA }{
The value 248750FC 15 ngw Reqisters 19 and 12, now read in
written into register: 19 as the reverse the previous order, reflect the
write enable goes high. valuss written to them previously.

The device performs as expected.

APPENDIX A: Textbook Problems (From the UNrevised Edition)

4.2.1) a) From the components in Figure 4.2, this instruction will use the PC, the instruction memory,
the register file (both read ports and the write port), and the ALU.

b) Again from Figure 4.2, this instruction will use the PC, the instruction memory, the register
file (one read port and the write port), and the mux between the instruction memory and the ALU.

4.2.2) a) This instruction will need a third register read port and a third ALU input port.
b) This instruction will need a shifting module, which probably should be placed in the ALU.

4.2.3) a) This instruction will need an additional ALU control signal that would correspond to a 3-input
addition.

b) This instruction will need a ALU new control signal as well.

4.8.1) a) This bit is used only for shift amount (R-type) or constant/address value (I-type). One way
would be to load a known value into a register and write it to address 0x110000000. If this value
appears instead in address 0x100000000, then the bit is stuck at zero.

b) This signal is used only when loading data from memory. If it is stuck at zero, then the ouput
of the ALU will be read instead of the memory. So one solution would be to write a certain number to
memory and then attempt to load a register from that location in memory, referenced by a lower
memory value with an offset, which must be different from the value in memory. The output of the ALU
will be the offset, so if the register is loaded with this value after execution, then the signal is stuck on
zero.

4.8.2) a) The same test as above could be used (using the memory values in opposite roles), or an ORI
with 0000 and the zero register could be executed. If bit 7 of the result is 1, then the signal is stuck at 1.

b) The test above can’t be used because there would be no way to know whether anything read
from memory was already there or not. However, if this signal is stuck at 1, then it will not be possible
to read from the ALU output. Any simple ALU operation would not assert this signal, so if a register’s
value does not reflect the output of the ALU, then the signal is stuck.

4.8.3) a) Yes. There is always more than one way to skin a cat when it comes to constants and offsets.
This would require some more shifting around and some creative use of registers, but you could make it
work.

b) No. If a register can’t read from the ALU output, then nothing useful can be done.

APPENDIX B: Code for “registerFile”

-- Bob Minchin

-- EEL 4713C

-- Homework 3

-- Part 3.4: 32-Bit, 32-Register File

LIBRARY ieee ;
USE ieee.std logic_1164.all ;
USE ieee.std _logic_unsigned.all ;

ENTITY registerFile IS
--32-bit input, output
--5-bit mux signals
--1-bit clock, write enable

PORT (rrO, rrl, rw : IN STD_LOGIC_VECTOR(4 DOWNTO 0) ;
d : IN STD_LOGIC_VECTOR(31 DOWNTO 0) ;
clk, wr : IN STD_LOGIC ;
q0, ql : OUT STD_LOGIC_VECTOR(31 DOWNTO 0)) ;

END registerFile ;

ARCHITECTURE Structure OF registerFile IS
--Temporary signals between output of registers and output of device
--Arrays would have been better
SIGNAL outO00, outOl, outO2, out03, out04, outO05, outO6, outO7, out08,
out09, outlO, outll, outl2, outl3, outl4, outl5, outl6, outl7,
outl8, outl9, out20, out2l, out22, out23, out24, out25, out26,
out27, out28, out29, out30, out31l : STD LOGIC_VECTOR(31 DOWNTO
0 :
—-—Individual write enables for the 32 muxes
SIGNAL wr01, wr02, wr03, wrO4, wr05, wrO6, wr07, wrO08, wr09, wrlO, wrll,
wrl2, wrl3, wrl4, wrl5, wrl6, wrl7, wrl8, wrl9, wr20, wr2l, wr22,
wr23, wr24, wr25, wr26, wr27, wr28, wr29, wr30, wr3l :
STD _LOGIC ;
--“reg32” component from Assignment 2
COMPONENT reg32 IS

PORT (D : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
Clk, Wr, Clr : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(31 DOWNTO
0)
END COMPONENT ;
BEGIN
PROCESS(rr0, clk)
BEGIN

--Control logic for output 1
IF clk"EVENT AND clk = "1" THEN
CASE rrO 1S

WHEN "00000" => g0 <= outO00
WHEN 00001 => g0 <= outO1
WHEN "00010" => g0 <= out02
WHEN "00011" => g0 <= out03
WHEN 00100 => g0 <= out04
WHEN *"00101" => g0 <= out05
WHEN ""00110' => g0 <= out06
WHEN **00111" => g0 <= outO07
WHEN **01000" => g0 <= out08 ;

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
END CASE ;
END IF ;

END PROCESS ;

PROCESS(rrl, clk)

BEGIN

--Control logic for output 2

IF clk"EVENT AND

CASE rrl 1S

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

""01001"
"01010"
""01011""
""01100"
'"01101"
'"01110"
"01111"
'*10000"
''10001"
''10010™
''10011"
''10100"
"'10101"
""10110"
""10111"
""11000"
"11001"
''11010"
'"11011"
''11100"
"11101"
''11110"

11111 =

OTHERS =>

clk = "1" THEN
"00000" => g1
"00001" => gl
00010 => g1
"00011" => ql
"00100" => g1
"00101" => q1
"00110" => q1
"00111" => ql
"01000" => ql
»01001" => gl
"01010" => g1
"01011" => g1
"01100" => g1
“01101" => gl
"01110" => gl
"01111" => g1
10000" => q1
"10001" => ql
"10010" => q1
"10011" => ql
#10100" => ql
“10101" => ql
"10110" => g1
"10111" => g1
"11000" => gl

<=
<=
<=
<=
<=
<=
<=
<=

<=
<=
<=

<=
<=
<=
<=
<=
<=

<=
<=
<=

out09
outlo
outll
outl?2
outl3
outl4d
outls5
outl6
outl?7
outl8
outl9
out20
out21
out22
out23
out24
out25
out26
out27
out28
out?29
out30
out31

out00
outOl
out02
out03
out04
out05
out06
outO07
out08
out09
outlo
outll
outl2
outl3
outls
outl5
outl6
outl7
outl8
outl9
out20
out21l
out22
out23
out24

WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN
WHEN

END CASE ;

END IF ;
END PROCESS ;
PROCESS(rw, wr)
BEGIN

—--all write
wrol <= "0°
wr02 <= "0*
wro3 <= "0*
wro4 <= "0"
wr0o5 <= "0*
wroé <= "0*
wro7 <= "0*"
wro8 <= "0*
wr09 <= "0-
wrl0 <= "0"
wrll <= "0°
wrl2 <= "0°
wrl3 <= "0*"
wrl4 <= "0"
wrl5 <= "0"
wrle <= "0°
wrl7 <= "0O"
wrlg8 <= "0"
wrl9 <= "0*
wr20 <= "0*
wr2l <= "0*
wr22 <= "0-
wr23 <= "0"
wr24 <= "0-
wr25 <= "0*
wr26 <= "0-°
wr27 <= "0-
wr28 <= "0-
wr29 <= "0-
wr30 <= "0*
wr3l <= "0-
CASE rw IS

11001 =>
11010 =>
"11011" =>
"11100" =>
'"11101" =>
11110 =>
11111 =>
OTHERS =>

enable initialized

<=
<=
<=
<=
<=
<=
<=

to

out25
out26
out27
out28
out29
out30
out3l

--control logic for write enables

WHEN

IF wr
1IF ;

END

"'00001" =>

= "1" THEN wrOl1 <= "1°

WHEN ""00010™ =>
= "1" THEN wrO02 <= "1°

WHEN

WHEN

IF wr
IF ;
""00011" =>
IF wr
IF ;
""00100" =>

END

END

= "1 THEN wrO3 <= "1°

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

IF wr = "1°
END IF ;
""00101" =>
IF wr = "1°
END IF ;
"00110" =>
IF wr = "1°
END IF ;
"00111" =>
IF wr = "1°
END IF ;
"01000*" =>
IF wr = "1°
END IF ;
"01001* =>
IF wr = "1°
END IF ;
""01010" =>
IF wr = "1°
END IF ;
"01011" =>
IF wr = "1°
END IF ;
""01100" =>
IF wr = "1°
END IF ;
"01101" =>
IF wr = "1°
END IF ;
""01110" =>
IF wr = "1°
END IF ;
01111 =>
IF wr = "1°
END IF ;
""10000" =>
IF wr = "1°
END IF ;
"10001*" =>
IF wr = "1°
END IF ;
'"10010" =>
IF wr = "1°
END IF ;
"10011" =>
IF wr = "1°
END IF ;
"10100" =>
IF wr = "1°
END IF ;
"10101" =>
IF wr = "1°
END IF ;
'"10110" =>
IF wr = "1°
END IF ;
10111 =>

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

wro4

wr05

wro6

wro7

wro8

wr09

wrl0

wrll

wrl2

wrl3

wrl4

wrlb

wrl6

wrl7

wrl8

wrl9

wr20

wr2l

wr22

T

I1I

Th

Th

T

T

"1

Th

Th

T

IlI

Th

-

-

"1

T

Th

Th

"1

IF wr = "1" THEN wr23 <= "1" ;
END IF ;

WHEN ""11000"" =>
IF wr = "1° THEN wr24 <= "1° ;
END IF ;

WHEN 11001 =>
IF wr = "1° THEN wr25 <= "1" ;
END IF ;

WHEN "'11010" =>
IF wr = "1° THEN wr26 <= "1-° ;
END IF ;

WHEN **11011" =>
IF wr = "1" THEN wr27 <= "1° ;
END IF ;

WHEN **11100" =>
IF wr = "1° THEN wr28 <= "1° ;
END IF ;

WHEN ""11101" =>
IF wr = "1 THEN wr29 <= "1° ;
END IF ;

WHEN 11110 =>
IF wr = "1° THEN wr30 <= "1" ;
END IF ;

WHEN ""11111" =>
IF wr = "1° THEN wr31 <= "1° ;
END IF ;

WHEN OTHERS =>

END CASE ;
END PROCESS ;

Reg00 : reg32 PORT MAP (d, clk, "0", "1", outO0) ;
Reg01 : reg32 PORT MAP (d, clk, wrOl1l, "1", outOl) ;
Reg02 : reg32 PORT MAP (d, clk, wr02, "1%, out02)
Reg03 : reg32 PORT MAP (d, clk, wr03, "1", out03)
Reg04 : reg32 PORT MAP (d, clk, wr04, "1%, out04)
Reg05 : reg32 PORT MAP (d, clk, wr05, "1%, out05)
Reg06 : reg32 PORT MAP (d, clk, wr06, "1%, out06)
Reg07 : reg32 PORT MAP (d, clk, wrO7, 1%, outQ7)
Reg08 : reg32 PORT MAP (d, clk, wr08, 1%, out08)
Reg09 : reg32 PORT MAP (d, clk, wrQ09, "1%, out09)
Regl0 : reg32 PORT MAP (d, clk, wrl0, "1°, outlO)
Regll : reg32 PORT MAP (d, clk, wrll, "1°, outll)
Regl2 : reg32 PORT MAP (d, clk, wrl2, "1%, outl2)
Regl3 : reg32 PORT MAP (d, clk, wrl3, 1%, outl3)
Regl4 : reg32 PORT MAP (d, clk, wrl4, ®1%, outl4)
Regl5 : reg32 PORT MAP (d, clk, wrl5, "1%, outlb)
Regl6 : reg32 PORT MAP (d, clk, wrl6, "1°, outl6)
Regl7 : reg32 PORT MAP (d, clk, wrl7, "1%, outl?7)
Regl8 : reg32 PORT MAP (d, clk, wrl8, "1", outl8)
Regl9 : reg32 PORT MAP (d, clk, wrl9, "1°, outl9)
Reg20 : reg32 PORT MAP (d, clk, wr20, "1°, out20)
Reg21 : reg32 PORT MAP (d, clk, wr2l, "1%, out2l)
Reg22 : reg32 PORT MAP (d, clk, wr22, "1%, out22)
Reg23 : reg32 PORT MAP (d, clk, wr23, "1%, out23)
Reg24 : reg32 PORT MAP (d, clk, wr24, "1%, out24)
Reg25 : reg32 PORT MAP (d, clk, wr25, "1%, out25)

Reg26 reg32 PORT MAP (d, clk, wr26, "1%, out26)

Reg27
Reg28
Reg29
Reg30
Reg31

END STRUCTURE ;

reg32 PORT MAP
reg32 PORT MAP
reg32 PORT MAP
reg32 PORT MAP
reg32 PORT MAP

(d,
(d,
(d,
,
,

clk,
clk,
clk,
clk,
clk,

wr27,
wr28,
wr29,
wr30,
wr3l,

-1,
-1-
“1-
“1-
-1-.

out27)
out28)
out29)
out30)
out3l)

