ASSIGNMENT 4
LONG NGUYEN
EEL4713
3/17/2012

INTRODUCTION

In this lab I worked on designing a single cycle MIPS processor which executed the 29 Core Instructions. Parts from the previous lab
2 were combined with additional hardware in order to create the mips_core file in this lab. A major goal of this lab is to make sure

the all the instructions work for the next labs.

DESIGN AND TESTING

The following is the single cycle datapath. A more detailed datapath can be found in the bdf files,

LAB4 TEST

The first instruction test for the processor came from the lab4_test.mif. This test gave me a number of difficulties in when trying to simulate in model sim. As it
would turn out, the register file was not functioning properly and became the source of a very long headache since beginning in the week.

100400000 00400001 00400002 00400003 00400004 00400005 00400006

10000... /10000000 10000010 1000... /0000000A 0000000A 0000AS5A 00000000

1000 :"011 010 111 011 010 111

99 S S S— 1) 5 S S S— |0} { S S

10000.../10000000 10000010 1000... /0000000A 0000000A 0000AS5A 00000000

J____ 10000040 | \1000...)

lui $30,$1000

10000.... /3C1E1000 23DE0010 2010000A 02009821 3611A550 240F8642 000F7C...

101U AL E—— 72 L1V S — 77V — — 1 1D D V.| E— —— S V51 7 — —

0 30 16 19 17 15
1{0000000 {00000000} {10000000%} {00... }{00000000} {10000010} {00... [{00000000} {10000010%} {00... }{00000000} {10000010} {00... /{00000000} {10000010%} {00000000} {0000000..

(31) 00000000
(30) $1000 was written tora(30) which is $fp UL 10000010
(29) 00000000
(28) 00000000
(27) 00000000
(26) J00000000
(25) J00000000
ooo00000
Joooooo0o
00000000

00000000 -
100000000 addu adds $16 to $19 and both now have the same contents

00000000 0000000A

100000000

100000000 0000AS5A
[d di $16.0, SO00A adds SO00A to register 16 TN
00000000

J00000000

00000000

00000000

00000000

00000000

100000000

1327390000 ps
Cursor 1

Once the datapath was working correctly again, this simulation was successfully completed.

1ext instruction adds 10 to $30

the next ori instruction inserts $A550 intora(17)

00400008 00400000

00400008 00400009 0040000A 00

00400007 00400008 00400009 0040000A [oof0boos 0040000C

L0 AL UL/ S 11! 1 01VL S S 10 1101 S 1! 101101 S L

00000000 J0000FEED 00008000 80000000 00000000 | 00000001 00008000

RN IR R R R R—
111 011 000 111 |

00000000 J000OFEED (00008000 80000000 00000000 | T Jo0000001 00008000
000F7C40 J35EFFEED 31F08000 00108400 01F090PA | | Jo1Foso28 001278C0
15 | 15

000000003 {100000103 (00000000} £000000003 €[(00000000} {10000010% {00000...}{00000000} {10000010} {00... {{00000000} {10000010% {00...}{00000000} {10000010} {0000000D} {00000000} {000000... }{00000000} {10000010} {O.
(31) 00000000 00000000 |
€D) 10000010 10000010
(29) 00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000
00000000
00000000 |
[-y . ey
T o s 2 (15) with itself to S the next instruction ands xXFEED with x8000 T
[T i 1 s ert XFEED |
0000000A JooooBooo | | Jsooobooo | | | and shifted right by 4
00000000 0000FEED |

its are then shifted left by 4
00000000

1¢ first two shifts are done %It’d while the last is llllsi%lt’d
—— __
Cursar 1 36444 ns

AL AUVILN- S E— — 71V 5 5§ — — " 10V - E— — 71172 V2| — ——

11F40002 08100018 2673FFFF 1660FFF6 02602820
o 111

{00000000} {10000010} {00000000} {00000000} {(
00000000
10000010
00000000

00000000
00 20) =ra(15) thus branching to x00400012 | I R S ———— R N N B
T e s s s s s sl BN N B | s SFFFF tora(16) | I N N
00010000 |__J0000B000

00000014

=
=]
=}
=]
=]
=]
=]
b=

|

0000001
000ASS5A
0000000
0008000
0000000
0000000
0000000
0000000
0000000
0000000

1337035000 ps
Cursnr 1 f3AR444 ns

Unfortunately it seems the branch functions did not properly branch as expected. For instruction x11F0002, the signals should’ve branched back to x00400010.
In this figure the branch jumped too far ahead. Due to time constraints, a throughout troubleshooting was not performed. However, there could be multiple
reasons for this failure. Firstly, I would check the controller to make sure the BEQ and BNE opcodes were correctly initialized. If not that, I would check

connections in the bdf and begin checking the hardware.

What this instruction should’ve continued to do would be to add further numbers into ra(16) and ra(17). Then the next instruction would be a jump and if
correctly initialized the jump would take the PC to 0040001B. There is a BNE after the jump to branch back to 00400013. The instructions would continue to
test the jump register function and move on to load word. The load word function should be able to read from the data memory into the register. Continuing,

the program ends with a BNE which depending on the value would loop through the instructions more.

LAB4 DEMO

The lab4_demo file tests many of the instructions further. As before, the branch functions were not able to be fixed just yet. The simulation up to that section

is as follows:

[The first three ORI instructions writes 4,3, and 5to the
respective registers. (1.2, and 3)

j00400001 00400002 00400003 00400004 00400005 00400006 00400007

ALlba AUIUIUIED S 10 AUIULULTY S E—— 1 111010 S — — L 10 U0 S E— — L 1110 S —— 0 0 S —— U —

100400001 00400002 00400003 00400004 00400005 00400006 00400007

— e
/00400000 00400001 00400002 00400003 00400004 00400005 00400006

10000.... 00000004 00000003 00000005 QOFFF0000 OFFFFFFC 56780000 S567848B...

00000003 | | J0000000> | 0| JOFFFO000 | 000 | JOFFFFRFC L | 06780000 0 0 | 0 00 | 156/84B...)

fooo | Jo1i1
—
10000...J00000004 00000003 00000005 OFFF00DO OFFFFFFC 56780000 567848...

00000003 | 2= | JO000000> | @@= @@ JOFFFOODO0 = @20 0| JOFFFFFFC 1 0 0 0 | 06780000 00 | 0 0 | [156/84B... |

—
10000.... /34010004 34020003 34030005 3C1EQFFF 37DEFFFC 3C045678 348448B...

0000...)34010004 @ 34020005 | | ;3403000> | SCIe0Fer 0 | WS/DERFFC | | (SC0456/8 0 0 | | |34844B... |

892440000 ps
Cursor 1

5 to 364544 ps [

s

0000000
0000000
00000000
0000000

L 4 & & & & &

.
= ollellofle = o [[lo S oo =S
=] =] =] =]
=] =3 =] =]
= = =4 = =
=] =] =] =]
=] =]
=3 =] =}

.

00000000

00000000
0000000
0000000

00000000
0000000

00000000

L ddd

0000000
0000000
0000000
00000000
00000000
0000000

L & & & &

(SN

=
=

L & & &

3
&
&
&
&
&
&
8
&
&
&
&
&
ﬁ_l
8
&
&
&
&
&
8
£
&
&
&
&

00000000
00000000 56780000 [56784BCD
00000000 00000005 hen, ORI 4,4,.$4BCD is ORed tora(4)
00000003

0000004
00000000

«
«

892440000 ps

000000003 £00000000} {000000003 000000003 £€/{00000000} {OF...]{00000000} {OFFFFFFC} £00....{00000000} {10000000% {00... |{00000000} £10000000% {00000000% {00000000} £0000000... }{00000000} {10000000} {00...{00000000}... |

11000000007 {10000000% {00...:{00000000;... |
00000000

OFFFFFFC 10000000
00000000

addi adds $4tora(30) yielding x1000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
gggg??gg a(4) is then added to ra(5) a(4) is added tora(5) and saved inra(6) for add 6.4.5
[00000000_§

T opving the contents over ACFG979A

00000000 56784BCD 00000000

56784BCD

00000005

00000003

00000004 00000003

—— ——
00000000

5 30 6 S 1 0

£
&
&
&
&
&
&
&
£
&
&
B
&
B
&
&
£
&
&
£
&
&
£

892440000 ps
0ps

Branch here0 begins after this instruction . The loop should decrement ra(1) until it is 0. Herel does the same for ra(2). Here2 should also decrement ra(3),
however, the malfunction begins to throw the instructions off.

+
g

Ll ddddeded

ollellellellellelle|le|le

=] =]

=] =]

= =1

=] =] =] =]

=] =] =] =]
=] =]
=] =]

o-0-0-0-0-0-0-0-0-

.

Ll dddddeded

L

&
B
&
&
&
&
&
&
B
B
&
&

Cursor 1

992445000 ps

0000000
0000000
0000000

AAR"AR
=]
=]
=]
=]

=)
=]

00

0000000
0000000
0000000

0000000

0000000

addi 6.6.51111 adds tora(6)

00000000
ACFQ979A CFQABAB
567848CD 00000000

1 0 2 6 0

3 S S | SS— S 7 S S S - N S —

AFC... |8FC50000 2021FFFF 1420FFF9 2042FFFF 20C61111 1440FFFD

(-1mOS 1L L S S N 72173 | o cS— S L 7! o - SS— S 7! 7 x i o cSS— S 7210 9 1 9 S S

0043000D 0043000E 0043000F 00430010 00430011 00430012

AVALe £ 11IVIY] =S — {11 1 1111V) S —— 1 11100 1| S — —

0043000D 0043000E 0043... |0043000F 00430010 00430011 0043...0044000F

QU4sS000E | | | AU X1VIUIY] S 6L 10108 L | N — 1 1D S S — L P (01U {UIVLY) S

0043000C 0043000D 043000E 0043000F 00430010 00430011

ALUe S11IVILID SN\l £ 10101V] S — L 11UV S — !V 511U L U O— {1 10100 S S —

5678...)00000000 FFFF... 00000000 00000002 0000... JACFOA8SAB ACF... 100000002

cerr,.. JOU000000 L | JO0D0OUOUZ | JOUOU...,

00000000
00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

S9E1569A

00000000

00000000

00000000

00000000 |
gggggggg as the branch continues to malfunction, ra(2) does decrease to 0. I S B B
[B | o wever, other registers are being altered that should not be. I S
00000000

00000000

ACFOCACD

00000000 5678...)00...15678...]00... }5678...00... |5678... 00000000

56784BCD r_‘156784BCD
00000000 00000005
00000000 00000003 00000

\00... J00... J00000g

S9E1959C 00000004 00000003 00000002 00000001 00000000 ' S9E1959A S9E1959C
00000000

+
Ll dddddd

1 4 4 dédéddeddddddd

(S

&
&
&
&
&
&
&
&
B
&
&
&
B
B
&
&
&
&
B
&
&
&
8-

e e 15 s 00 00 M0s 10000 oo

0 WA A 43004 1S A A S AAMAAAS AAAANIS AR MMM A A AL AR b D)

OO0 e

-

00000000 2555500005000 00000001I000R0RRRRERRRRRRERARRIBISREERARES (T oooooooo

S T (S S T S U N A O

”\”\”ﬂ”\”\”ﬂ”ﬂ”ﬂ”\”\”ﬂ"\”TTY_W”ﬂ”\”\”ﬂ'_\”\”ﬂr\”\”\”\”\"\”ﬂ”\:\”\"ﬂ"\”\r\”\r\”\”ﬂ”\”\”ﬂ” S150000800000000001I0000000100000000000

-

992445000 ps
Cursor 1 18375375 ps

LAB4_INSTTEST

This test is supposed to demonstrate the functionality of all 29 instructions. However, due to time constraints, I was only able to do some, and hope to
troubleshoot the rest after this lab is turned in.

00000000

J00000000

00000000

J00000000

J00000000

J00000000

J00000000

00000000

00000000

00000000

100000000

j00000000

100000000

00000000

00000000

00000000 !

[T Th e first 2 addi instructions add values tothe BN he outputs of the test code can | R
00000000 e seen in the Write Data divider I I D NN N
J00000000
)00000000
Joooooooo || |__Jooooboos
)00000000 00000002

: B0
U & (S

"y
L &

ooo0o00

a5

egisters to be used by further instructions

£
£
£
£
£
-
£
£
£
£
£
&

10000.../20010002 20020008 2403FFFF 3064FFFF 1022001F 1422001F 00000009

ALLULLUSS VALV SULULVP A Sy PAULUPAVIVIL - S S S 2. {1] o o S SN S 11157 | i N N—— 0 41 FVAVIU Y S S L 772U} § S N

100400001 00400002 00400003 00400004 00400005 00400006 00400026

ALl UIVIVIED S 0 AU 1007 S E—— 0L 1 LT S —— 1 01111 S —— 1 11 V1 —— 011 1101V S ——

100400001 00400002 00400003 00400004 0040... /00400005 0040... /00400025 0040... 00400024

00400001, j00400002 | | J00400003 | | 00400004 | | | 00400005 | j0U40...,0040002> | J0040...)

j00400000 00400001 00400002 00400003 00400004 00400005 00400025

PU00000, ;00500001 L | 0080000 | 1 J008UDODS L s00s0D00s | JOOFUUU0> L L

0000...00000002 00000008 00000000 FFFFFFFA 00000009

1000 :)010 000 001 111
—- _
Cursor 1 0ps

The current functionality of the datapath is limited due to the failure to implement several instructions. Work will continue on adding the necessary hardware

to perform the last instructions needed before the next assignment.

TIMING SIMULATION SPEED

Timing analysis of the processor was performed in Quartus. For some reason, the aluctrl was clocked as well.

Slow Model Fmax Summary

Fmax Restricted Fmax Clock Name Note
1 31.07 MHz 31.07 MHz clk
2 31.66 MHz 31.66 MHz mclk
3 64.61 MHz 64.61 MHz alu32control:aluctrl| control[0]
4 33445MHz 225.43 MHz InstructionMem:instmem|altsyncram:altsy...t| altsyncram_b971:auto_generated|q_a[0] limit due to hold check
5 41771 MHz 120.34 MHz InstructionMem:instmem | altsyncram:altsy... | altsyncram_b971:auto_generated|q_a[26] limit due to hold check
CONCLUSION

Without a properly functioning datapath, I am unable to satisfactorily conclude this assignment. The datapath is however very close to being finished and
troubleshooting should not take too long, though it is longer than I have to turn this paper in. All VHDL and BDF files are included in the submission.

