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INTRODUCTION

In this lab I worked on designing a single cycle MIPS processor which executed the 29 Core Instructions. Parts from the previous lab
2 were combined with additional hardware in order to create the mips_core file in this lab. A major goal of this lab is to make sure

the all the instructions work for the next labs.

DESIGN AND TESTING

The following is the single cycle datapath. A more detailed datapath can be found in the bdf files,




LAB4 TEST

The first instruction test for the processor came from the lab4_test.mif. This test gave me a number of difficulties in when trying to simulate in model sim. As it
would turn out, the register file was not functioning properly and became the source of a very long headache since beginning in the week.
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(31) 00000000
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1327390000 ps
Cursor 1

Once the datapath was working correctly again, this simulation was successfully completed.

1ext instruction adds 10 to $30

the next ori instruction inserts $A550 intora(17)
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(31) 00000000 00000000 |
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T o s 2 (15) with itself to S the next instruction ands xXFEED with x8000 T
[T i 1 s ert XFEED |
0000000A JooooBooo | | Jsooobooo | | | and shifted right by 4
00000000 0000FEED |

its are then shifted left by 4
00000000

1¢ first two shifts are done %It’d while the last is llllsi%lt’d
—— __
Cursar 1 36444 ns
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1337035000 ps
Cursnr 1 f3AR444 ns

Unfortunately it seems the branch functions did not properly branch as expected. For instruction x11F0002, the signals should’ve branched back to x00400010.
In this figure the branch jumped too far ahead. Due to time constraints, a throughout troubleshooting was not performed. However, there could be multiple
reasons for this failure. Firstly, I would check the controller to make sure the BEQ and BNE opcodes were correctly initialized. If not that, I would check

connections in the bdf and begin checking the hardware.

What this instruction should’ve continued to do would be to add further numbers into ra(16) and ra(17). Then the next instruction would be a jump and if
correctly initialized the jump would take the PC to 0040001B. There is a BNE after the jump to branch back to 00400013. The instructions would continue to
test the jump register function and move on to load word. The load word function should be able to read from the data memory into the register. Continuing,

the program ends with a BNE which depending on the value would loop through the instructions more.



LAB4 DEMO

The lab4_demo file tests many of the instructions further. As before, the branch functions were not able to be fixed just yet. The simulation up to that section

is as follows:

[The first three ORI instructions writes 4,3, and 5to the
respective registers. (1.2, and 3)

j00400001 00400002 00400003 00400004 00400005 00400006 00400007
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00000003 | | J0000000> | 0| JOFFFO000 | 000 | JOFFFFRFC L | 06780000 0 0 | 0 00 | 156/84B... )

fooo | Jo1i1
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892440000 ps
Cursor 1

5 to 364544 ps [
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00000000 00000005 hen, ORI 4,4,.$4BCD is ORed tora(4)
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gggg??gg a(4) is then added to ra(5) a(4) is added tora(5) and saved inra(6) for add 6.4.5
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Branch here0 begins after this instruction . The loop should decrement ra(1) until it is 0. Herel does the same for ra(2). Here2 should also decrement ra(3),
however, the malfunction begins to throw the instructions off.
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LAB4_INSTTEST

This test is supposed to demonstrate the functionality of all 29 instructions. However, due to time constraints, I was only able to do some, and hope to
troubleshoot the rest after this lab is turned in.

00000000

J00000000

00000000

J00000000

J00000000

J00000000

J00000000

00000000

00000000

00000000

100000000

j00000000

100000000

00000000

00000000

00000000 !

[T Th e first 2 addi instructions add values tothe BN he outputs of the test code can | R
00000000 e seen in the Write Data divider I I D NN N
J00000000
)00000000
Joooooooo || |__Jooooboos
)00000000 00000002

: B0
U & (S

"y
L &

ooo0o00

a5

egisters to be used by further instructions

£
£
£
£
£
-
£
£
£
£
£
&

10000.../20010002 20020008 2403FFFF 3064FFFF 1022001F 1422001F 00000009
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The current functionality of the datapath is limited due to the failure to implement several instructions. Work will continue on adding the necessary hardware

to perform the last instructions needed before the next assignment.



TIMING SIMULATION SPEED

Timing analysis of the processor was performed in Quartus. For some reason, the aluctrl was clocked as well.

Slow Model Fmax Summary

Fmax Restricted Fmax Clock Name Note
1 31.07 MHz 31.07 MHz clk
2 31.66 MHz 31.66 MHz mclk
3 64.61 MHz 64.61 MHz alu32control:aluctrl| control[0]
4  33445MHz  225.43 MHz InstructionMem:instmem|altsyncram:altsy...t| altsyncram_b971:auto_generated|q_a[0] limit due to hold check
5 41771 MHz  120.34 MHz InstructionMem:instmem | altsyncram:altsy... | altsyncram_b971:auto_generated|q_a[26] limit due to hold check
CONCLUSION

Without a properly functioning datapath, I am unable to satisfactorily conclude this assignment. The datapath is however very close to being finished and
troubleshooting should not take too long, though it is longer than I have to turn this paper in. All VHDL and BDF files are included in the submission.



