
Lab 4 Report

Single Cycle Design

BAOTUNG C. TRAN

EEL4713C

Added Hardware :

Andi and Ori : For this instruction, I had to add a zero extender into my design. Which therefore required

me to add a mux that controlled whether the immediate value from the instruction was zero extended

or sign extended.

BNE and BEQ : These instructions required me quite a bit of extra logic. The problem was that before,

we were using the zero signal from the alu to determine whether to branch or not. But the problem

was, there was no way to differentiate between BNE and BEQ. Therefore I added two and gates and an

or gate, and also added two more control signals called BEQ and BNE to the controller to differentiate

when they would branch.

Jump and Jump and Link : For these instructions I added a mux to the address of the PC counter. I also

added a control signal named JJAL, which controlled the mux. When it was set to 1, it would take the

value of the jump address instead of just PC+4. For jump and link, I added an additional mux at the

“Write Register” port of the register file, which was also controlled by JJAL. When JJAL was true, the mux

would output 11111, which would select register (31) and then write the PC+4 to that address.

Jump Register : For this instruction I added a mux after the Jump and Link mux. The mux select was

controlled by a signal JR. The JR signal came from the alucontrol. This is because JR is an r-type

instruction meaning, the control signal could not come from the main controller. When JR is true, the

mux would switch to inputting R[rs] into the PC.

LBU, LHU, LUI, LW : These instructions were quite tricky. I firstly had to use and gates to mask

M[R[rs]+SignExtImm for LBU and LHU. I then added a four-to-two mux to choose between LBU, LHU,

LUI, and LW. This would go into a mux called loadormem_mux. This mux would then choose whether to

output what came from the alusrc_mux(chooses between data memory or alu output) or one of the

load instruction values to write to the register file.

SLL and SRL : Since these were R-Type instructions, I had to add a shdir signal to the alucontrol to tell

them which way to shift.

SB, SW, SH : For these instructions, I added an adder that summed the values of the SignExtImm + R[rs].

This value would then go into a mux that took the inputs of SignExtImm+R[rs] and the ALU output. This

mux was controlled by “lscontrol” which I added to the controller. By use the ByteEnable signal on the

data memory, I could control to either write a byte, half word, or word.

**** My current bdf and vhd file increment the pc by just 1. During my own test file named

“lab4baotung_test.mif”, I incremented the pc counter by +4.

Below is the diagram of the previous hardware and the hardware that I had to include to create the

entire single cycle processor. To start my Instruction Memory at x00400000, I manually my register file

to reset to x00400000.

Control Signals Added:

Zeroorsign : Controls whether immediate value is zero-ext or sign-ext. I had to use this for andi, sltiu,

addiu and ori, as these instructions were zero extended. If it is 1, it is zero extended, if its 0, it is sign

extended

Loadormem : Chooses whether to output whats coming from the alusrc mux or, either half-word, byte,

word, or immediate value that is zero extended(lui).

Loadcontrol : Select line of mux that chooses between half-word, byte, word, or upper immediate.

Lscontrol : Select line of mux that chooses either the output of the ALU or R[rs] + SignExtImm to go into

address of data memory.

BNE and BEQ : Signals used to differentiate when its BEQ and BNE.

JJAL : Signal used to control two mux select lines when using the Jump or Jump and Link instruction.

JR: Placed in alucontrol since its an R-Type instruction. Used to control mux select line that goes into the

“Write Register” input of register file. When it’s set to 1, it will automatically set “Write Register” to

11111 or register(31).

Control Signals For New Instructions :

The complete values of the signals can be found in my controller and alu32control, which is located at
the end of the report.
The following are ONLY the signals that were configured for the new instructions which required the
new control signals.
These signals are directly from my controller:

when "001001" => -- addiu
 zeroorsign <= '1';
 aluop <= "001";
 regwrite <= '1';
 regdst <= '0';
 ALUSRC <= '1';

 when "001100" => -- andi
 zeroorsign <= '1';
 aluop <= "101";
 regwrite <= '1';
 regdst <= '0';
 ALUSRC <= '1';

 when "000100" => --BEQ
 branch <= '1';
 BEQ <= '1';
 aluop <= "110"; -- subtraction

 when "000101" => --BNE
 branch <= '1';
 BNE <= '1';
 aluop <= "110";

 when "001101" => -- ORI
 zeroorsign <= '1';
 aluop <= "010";
 regwrite <= '1';
 regdst <= '0'

 ALUSRC <= '1';

 when "001011" => -- sltiu
 zeroorsign <= '1';
 aluop <= "100"; -- tells alu control its an i instruction
 regwrite <='1'; -- enables register file to write
 regdst <='0'; -- writes to rt
 alusrc <='1'; -- takes in immediate value taht is sign extended.
 memtoreg <= '0'; --takes value, either 0 or 1 from aluout, and then will put it into rt.

 when "100100" => -- lbu
 aluop <= "001"; -- immediate instruction
 memtoreg <= '1';
 alusrc <= '1';
 regwrite <='1';
 loadcontrol <= "00"; --chooses mask lbu
 loadormem <= '1';
 lscontrol <= '1';

 when "100101" => --lhu
 aluop <= "001"; -- immediate instruction
 memtoreg <= '1';
 alusrc <= '1';
 regwrite <='1';
 loadcontrol <= "01"; -- chooses mask lhu
 loadormem <= '1';
 lscontrol <= '1';

 when "100011" => --lw
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 alusrc <= '1';
 regwrite <='1';
 loadcontrol <= "11"; --choses entire rs+signext
 loadormem <= '1';
 lscontrol <= '1';

 when "101000" => --sb
 BYTEENABLE <= "0001";
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 aluop <= "001";
 lscontrol <='1';
 memwrite <= '1';

 when "101001" => --sh
 BYTEENABLE <= "0011";
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 aluop <= "001";
 lscontrol <='1';
 memwrite <= '1';

 when "101011" => --sW
 BYTEENABLE <= "1111";
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 aluop <= "001";
 lscontrol <='1';
 memwrite <= '1';

 when "001111" => --lui
 aluop <="001";
 regwrite <= '1';
 loadcontrol <="10";
 loadormem <= '1';
 lscontrol <='1';

 when "001111" => --lui
 aluop <="001";
 regwrite <= '1';
 loadcontrol <="10";
 loadormem <= '1';
 lscontrol <='1';

 when "000010" => --jump
 jjal <= '1';

 when "000011" => --jal
 jjal <= '1';
 regwrite <= '1';

There were also some R-Type instructions which I had to change. Since the instruction is thrown to the
alu32control, I had to change some instructions there as well. They will be listed below.
SRL, SLL, and JR are all R-Type instructions which required extra signals such as shdir for the shift
direction and JR for the JR instruction.

elsif (func = "000010") then – SRL
shdir <= '0';
control <= "0011"; -- srl control

elsif (func = "000000") then -- sll
control <= "0011"; --sll control
shdir <= '1';

elsif (func ="001000") then – jr
control <= "1110";
 jr <= '1';

Simulation Testing:

Disclaimer : I will only annotate each instruction ATLEAST once. If I have annotated it already in a

previous slide, I might not annotate it again to save space and from you reading redundant information.

Lab4_demo.mif

 000 : 04000134; ori 1,0,$4

 001 : 03000234; ori 2,0,$3

 002 : 05000334; ori 3,0,$5

 003 : FF0F1E3C; lui 30,$0FFF

 004 : FCFFDE37; ori 30,30,$FFFC

 005 : 7856043C; lui 4,$5678

 006 : CD4B8434; ori 4,4,$4BCD

 007 : 00000530; andi 5,0,$0

 008 : 20288500; add 5,4,5 here0:

 009 : 0400DE23; addi 30,30,$4

 00a : 20308500; add 6,4,5

 00b : 0000C5AF; sw 5,30,$0

 00c : 0000C58F; lw 5,30,$0

 00d : FFFF2120; addi 1,1,$FFFF

 00e : F9FF2014; bne 1,0,here0

 00f : FFFF4220; addi 2,2,$FFFF here1:

 010 : 1111C620; addi 6,6,$1111

 011 : FDFF4014; bne 2,0,here1

 012 : FFFF6320; addi 3,3,$FFFF here2

 016 : C000100C; jal $00400300

 017 : 4000073C; lui 7,$0040

 018 : 0803E734; ori 7,7,$308

 019 : 0800E000; jr 7

 01a : E0001008; j $00400380 back:

 [01b..0bf] : 00000000;

 0c0 : 02002120; addi 1,1,$2

 0c1 : 0800E003; jr 31

 0c2 : 00101E3C; lui 30,$1000

 0c3 : 0000C28F; lw 2,30,$0

 0c4 : 20082200; add 1,1,2

 0c5 : 0000DD8F; lw 29,30,$0

 0c6 : 53FFA017; bne 29,0,back

 [0c7..0df] : 00000000;

 0e0 : 24082100; and 1,1,1

 0e1 : FFFF2130; andi 1,1,$FFFF

 0e2 : FFFFFFFF; GFO

 [0e3..0ff] : 00000000;

Lab4baotung_test.mif

*** The annotated mif file will be included in the report

I created my own program that ran through every single besides for addiu. Addiu will be annotated

when looking at the program flow of lab4_test.mif. Also, the pc is incremented by +4, and not +1.

 000 : 20018fff;
004 : 20020001;
008 : 00221820;

 00C : A0010000;
 010 : 90060000;
 014 : 3C2400FF;
 018 : 302500FF;

01C : 3427FF02;
 020 : 00824025;
 024 : 00884827;
 028 : 00045100;
 02C : 00045902;
 030 : 014B6022;
 034 : 014B6823;

 038 : 0041082A;
 03C : 2822ffff;
 040 : 2C43ffff;
 044 : 0041202b;

048 : A0280004;
 04C : A4280008;
 050 : AC28000C;
 054 : 902E0004;
 058 : 942F0008;
 05C : 8C30000C;

060 : 08000070;
 070 : 0C000078;
 078 : 34310084;
 07C : 02200008;

084 : 10220008;
 088 : 10210008;
 094 : 14210008;
 098 : 14220008;

LAB4_TEST.MIF :

For this program, I will only explain the control flow of the program. I will also annotate the “addiu”
instruction as I did not annotate that instruction in the previous simulations of lab4demo and
lab4baotung.

[0x000000] 0x3C1E1000 # lui $fp, 4096 ($fp = 4096 << 16)

[0x000001] 0x23DE0010 # addi $fp, $fp, 16 ($fp = $fp + 16)

[0x000002] 0x2010000A # addi $s0, $zero, 10 ($s0 = 10)

[0x000003] 0x02009821 # addu $s3, $s0, $zero ($s3 = $s0)

[0x000004] 0x3611A550 # ori $s1, $s0, -23216 ($s1 = $s0 | -23216)

[0x000005] 0x240F8642 # addiu $t7, $zero, 34370 ($t7 = 34370)

[0x000006] 0x000F7C40 # sll $t7, $t7, 17 ($t7 = $t7 << 17)

[0x000007] 0x35EFFEED # ori $t7, $t7, -275 ($t7 = $t7 | -275)

[0x000008] 0x31F08000 # andi $s0, $t7, -32768 ($s0 = $t7 & -32768)

[0x000009] 0x00108400 # sll $s0, $s0, 16 ($s0 = $s0 << 16)

[0x00000a] 0x01F0902A # slt $s2, $t7, $s0 (if ($t7 < $s0) $s2 = 1

else $s2 = 0)

[0x00000b] 0x01F0902B # sltu $s2, $t7, $s0 (if ($t7 < $s0) $s2 = 1

else $s2 = 0)

[0x00000c] 0x00127BC0 # sll $t7, $s2, 15 ($t7 = $s2 << 15)

[0x00000d] 0x3C140001 # lui $s4, 1 ($s4 = 1 << 16)

[0x00000e] 0x0014A042 # srl $s4, $s4, 1 ($s4 = $s4 >> 1)

[0x00000f] 0x11F40002 # beq $t7, $s4, 2 (if ($t7 == $s4) goto 2)

[0x000010] 0x2410FFFF # addiu $s0, $zero, 65535 ($s0 = 65535)

[0x000011] 0x02308825 # or $s1, $s1, $s0 ($s1 = $s1 | $s0)

[0x000012] 0x0800001B # j 0x001B (jump to addr 0x006C)

[0x000013] 0x02602820 # add $a1, $s3, $zero ($a1 = $s3)

[0x000014] 0x02202020 # add $a0, $s1, $zero ($a0 = $s1)

[0x000015] 0x0C00001E # jal 0x001E (jump & link to addr 0x0078)

[0x000016] 0xAFC20000 # sw $v0, 0($fp) (mem[$fp + 0] = $v0)

[0x000017] 0xAFC30004 # sw $v1, 4($fp) (mem[$fp + 4] = $v1)

[0x000018] 0x23DE0004 # addi $fp, $fp, 4 ($fp = $fp + 4)

[0x000019] 0x8FD10000 # lw $s1, 0($fp) ($s1 = mem[$fp + 0])

[0x00001a] 0x23DE0004 # addi $fp, $fp, 4 ($fp = $fp + 4)

[0x00001b] 0x2673FFFF # addiu $s3, $s3, 65535 ($s3 = $s3 + 65535)

[0x00001c] 0x1660FFF6 # bne $zero, $s3, -10 (if ($zero != $s3) goto -

10)

[0x00001d] 0x0800001D # j 0x001D (jump to addr 0x0074)

[0x00001e] 0x00851022 # sub $v0, $a0, $a1 ($v0 = $a0 - $a1)

[0x00001f] 0x00851827 # nor $v1, $a0, $a1 ($v1 = ?($a0 | $a1))

[0x000020] 0x03E00008 # jr $ra (jump $ra)

This program will infinitely loop forever. What happens is that it will continually jump back to x13
because it will check is s3(r19) is equal to 0. S3 will never equal to 0, because we are constantly
incrementing it by 65535. It will go back to 13, execute until it JAL to x1E. It will execute to 20, where it
will jump back to the address at the return address register which is x16. At x16, it will execute to 1c,
where it executes the BNE instruction to check if s3 is equal to 0 again, and then jump back to x13 again.

The annotations of the rest of the program flow are on the following page.

I had a problem with the timing report on Quartus for the slow model, showing that my regular clock
was up to around 92 MHz, and my memclk only being around 48 Mhz. Aside from that, logically, each
component that I would add would obviously decrease the max frequency of the process. I believe that
the lw, lbu, and lhu would decrease the fmax the most because of the access to memory. There are
many things you could do speed up your design though. The other instructions only needed extra
control signals, which should not have decreased the speed as much since it is mostly sequential logic. I
believe only the instructions that require us to access and load from memory will increase the critical
path.

As you can see below, the longest delay path is 11.030 ns, which is ironically from the instruction
memory and not the data memory.

After adding all the new instructions. I recompiled and got a new delay report, which is found below. It
increased the delay by about 5.0ns.

I added a lot of multiplexors to my design. What I could have done was look directly at the instruction
memory and look at the function code. Some of the instructions change only by one bit, and I could have
used that one bit as a control signal to when to active a select line for a multiplexor instead of adding a
control signal to my controller or alu32control. This would have greatly reduced the logic from the
controller as well sped up the processor as well, as the controller would have no need as much
sequential logic.

Controller signals :
case opcode is -- rtypes first
 when "000000" => -- this will include ALL R TYPE INSTRCUTIONS besides for JR

 aluop <= "000";
 regwrite <= '1';
 regdst <= '1'; -- changes regdst to write to d, and reads from s and t.
 alusrc <='0'; -- takes in value from rs to alu

 when "001000" => -- addi

 aluop <= "001";
 regwrite <= '1';
 regdst <= '0'; -- changes write destination to t.
 ALUSRC <= '1'; -- takes in immediate value to alu

 when "001001" => -- addiu

 zeroorsign <= '1';
 aluop <= "001";
 regwrite <= '1'; -- enables register file to write
 regdst <= '0'; -- changes write destination to t.
 ALUSRC <= '1';

 when "001100" => -- andi
 zeroorsign <= '1';
 aluop <= "101"; -- tells alucontrol its an i instruction
 regwrite <= '1'; -- enables register file to write
 regdst <= '0'; -- changes write destination to rt
 ALUSRC <= '1'; -- takes in immediate value

 when "000100" => --BEQ
 branch <= '1';
 BEQ <= '1';
 aluop <= "110"; -- subtraction

 when "000101" => --BNE
 branch <= '1';
 BNE <= '1';
 aluop <= "110";

 when "001101" => -- ORI
 zeroorsign <= '1';

 aluop <= "010"; -- tells alucontrol its an i instruction
 regwrite <= '1'; -- enables register file to write
 regdst <= '0'; -- changes write destination to rt
 ALUSRC <= '1'; -- takes in immediate value

 when "001010" => -- slti
 aluop <= "011"; -- tells alu control its an i instruction
 regwrite <='1'; -- enables register file to write
 regdst <='0';
 alusrc <='1'; -- takes in immediate value taht is sign extended.
 memtoreg <= '0'; --takes value, either 0 or 1 from aluout, and then will put it into rt.

 when "001011" => -- sltiu b hex
 zeroorsign <= '1';
 aluop <= "100"; -- tells alu control its an i instruction
 regwrite <='1'; -- enables register file to write
 regdst <='0'; -- writes to rt
 alusrc <='1'; -- takes in immediate value taht is sign extended.
 memtoreg <= '0'; --takes value, either 0 or 1 from aluout, and then will put it into rt.

 when "100100" => -- lbu
 aluop <= "001"; -- immediate instruction
 memtoreg <= '1';
 alusrc <= '1';
 regwrite <='1';
 loadcontrol <= "00"; --chooses mask lbu
 loadormem <= '1';
 lscontrol <= '1';

 when "100101" => --lhu
 aluop <= "001"; -- immediate instruction
 memtoreg <= '1';
 alusrc <= '1';
 regwrite <='1';
 loadcontrol <= "01"; -- chooses mask lhu
 loadormem <= '1';
 lscontrol <= '1';

 when "100011" => --lw
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 alusrc <= '1';
 regwrite <='1';
 loadcontrol <= "11"; --choses entire rs+signext
 loadormem <= '1';
 lscontrol <= '1';

 when "101000" => --sb

 --regdst <= '0';
 BYTEENABLE <= "0001";
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 aluop <= "001";
 lscontrol <='1';
 memwrite <= '1';

 when "101001" => --sh

 --regdst <= '0';
 BYTEENABLE <= "0011";
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 aluop <= "001";
 lscontrol <='1';
 memwrite <= '1';

 when "101011" => --sW

 --regdst <= '0';
 BYTEENABLE <= "1111";
 aluop <= "001"; --immediate instruction
 memtoreg <= '1';
 aluop <= "001";
 lscontrol <='1';
 memwrite <= '1';

 when "001111" => --lui
 aluop <="001";
 regwrite <= '1';
 loadcontrol <="10";
 loadormem <= '1';
 lscontrol <='1';

 when "000010" => --jump
 jjal <= '1';

 when "000011" => --jal
 jjal <= '1';
 regwrite <= '1';

 when others =>
 aluop <= "111";
 end case;

 --end if;

Alu32control :

begin
 process(ALUop, func)
 begin
 jr <= '0';
 shdir <= '0';

 if (ALUop = "000") then -- R TYPE

 if (func = "100000") then -- add
 control <= "0010"; -- add
 elsif (func = "100001") then -- addu
 control <= "0010";

 shdir <= '0';
 elsif (func = "100100") then -- and func number // func code same as lbu
 control <= "0000"; -- and

 elsif (func = "100101") then -- or
 control <= "0001"; -- or control

 elsif (func = "100111") then -- nor
 control <= "1100"; -- nor control

 elsif (func = "101010") then -- slt
 control <= "0111"; -- slt control

 elsif (func = "101011") then -- sltu
 control <= "1111"; -- sltu control

 elsif (func = "000000") then -- sll
 control <= "0011"; --sll control
 shdir <= '1';

 elsif (func = "000010") then-- srl
 shdir <= '0';
 control <= "0011"; -- srl control

 elsif (func = "100010") then --sub
 control <= "0110"; -- sub control

 elsif (func ="100011") then --subu

 control <= "0110"; -- subucontrol

 elsif (func ="001000") then -- jr
 control <= "1110";
 jr <= '1';
 else
 control <= "1110"; --VALUE THATS NOT USED

 end if;

 elsif (ALUop = "001")then -- I TYPE - -- this includes addi, addiu, beq, bne, lbu, lhu, ll, lw,
 sb, sc, sh, sw
 control <= "0010";

 elsif (ALUop = "010") then -- I TYPE --- this includes ori
 control <= "0001";

 elsif (ALUop = "011") then -- I TYPE -- this includes slti
 control <= "0111";

 elsif (ALUop = "100") then -- I TYPE -- this includes sltiu
 control <= "1111";

 elsif (AlUop = "101") then -- I Type - -- this includes ANDI
 control <= "0000"; -- aND

 elsif (ALUop = "110") then -- subtraction immediate-- this includes JAL
 control <= "0110"; -- substraction

 elsif (AlUop = "111") then -- operations which outputs 1110,
 -- which does not doing anything -- this inlcudes JR, LUI, J
 control <= "1110"; --VALUE THATS NOT USED

 end if;

