
 
 
 
 
 
 
 
 

Everett Salley 
4/18/2012 

EEL4713 Assignment #5 
  



Introduction: 
  
 In this lab, we took the single-cycle MIPS processor we had designed in the previous labs 
and pipelined it. The main reason for pipelining is to improve the overall efficiency of the 
processor by allowing it to perform different stages of multiple instructions at the same time as 
opposed to one instruction per clock cycle. By sectioning off the execution of an instruction into 
multiple registered stages, the amount of time required to execute each stage is smaller than the 
overall time required to execute an instruction. As a result, one can theoretically increase the 
overall clock speed of the processor by evenly dividing the delay amongst the different pipeline 
stages. The tradeoff is that this method introduces numerous hazards and properly dealing with 
said hazards increases the overall design complexity. Below is a simplified picture showing the 5 
pipeline stages in our MIPS processor: 
 

 
 
 The Instruction Fetch (IF) stage as its name implies fetches the instruction from the 
instruction memory using the program counter as a pointer to the address. The Instruction 
Decode (ID) stage decodes the instruction to generate the proper control signals and outputs the 
requested register data from the register file. The Execute (EX) stage is where the actual 
arithmetic required by the instruction is performed. The Memory Access (MEM) stage is where 
data is either written to or read from the data memory. Finally the Write Back (WB) stage is 
where data is written back to the register file.  
 
 As was mentioned before, the introduction of a pipeline also introduces numerous 
hazards that unless dealt with will break the operation of a program. The problem arises from the 
fact that there is now a latency from when an instruction is first fetched to when it is fully 
executed and results are stored. A hazard occurs whenever the program needs data that was a 
result of a previous operation, but has not yet been stored in either data memory or the register 
file. Since this data propagates throughout the pipeline registers, the most efficient way of 



handling such a hazard is to simply forward it (ie don't wait until it is written to the register file) 
to the requested location. However, there are some instances where the data is simply not 
available to be forwarded (fetching data from memory for instance) and the only possible course 
of action is to "stall" the pipeline until the data is available. Stalling basically consists of 
accessing the same instruction repeatedly while asserting the control signals to zero for the 
redundant instructions. The result is that the processor continues executing the instructions 
before the stall, but performs no operation (nops) until the stall is over. The combination of 
forwarding and stalling makes the pipelined processor viable. The Hazard Table on the following 
page shows the various hazards encountered and how to deal with them. 
 
 My hazard table differed slightly from the one that was provided to use in class. For 
instance, my register file is written to on the falling clock edge, which means that the same data 
can be written to and read from a particular register in the same clock cycle. This completely 
eliminates the need for the forwarding muxes in the ifid stage. As a result, I only have to check 
for hazards over 2 stages and my hazard table is significantly reduced in many areas. 
 
 
  



  R AI L S JR LUI B JAL 

R 

1a: exmem.rd=idex.rs(1) 
                      =idex.rt(2) 
2a: memwb.rd=idex.rs(3) 
                      =idex.rt(4) 
                        

1a: exmem.rd=idex.rs(1) 
2a: memwb.rd=idex.rs(3) 
 

1a: exmem.rd=idex.rs(1) 
2a: memwb.rd=idex.rs(3) 
 

1a: exmem.rd=idex.rs(1) 
                    =idex.rt(2) 
2a: memwb.rd=idex.rs(3) 
                     =idex.rt(4) 
 

1a: idex.rd=ifid.rs(stall) 
2a: exmem.rd=ifid.rs(8) 
   

1a: idex.rd=ifid.rs(stall) 
               =ifid.rt(stall) 
2a: exmem.rd=ifid.rs(8) 
                    =ifid.rt(10) 
   

AI 

1a: exmem.rt=idex.rs(1) 
                     =idex.rt(2) 
2a: memwb.rt=idex.rs(3) 
                      =idex.rt(4) 
 

1a: exmem.rt=idex.rs(1) 
2a: memwb.rt=idex.rs(3) 
 

1a: exmem.rt=idex.rs(1) 
2a: memwb.rt=idex.rs(3) 
 

1a: exmem.rt=idex.rs(1) 
                     =idex.rt(2) 
2a: memwb.rt=idex.rs(3) 
                      =idex.rt(4) 
 

1a: idex.rt=ifid.rs(stall) 
2a: exmem.rt=ifid.rs(8) 
   

1a: idex.rt=ifid.rs(stall) 
                =ifid.rt(stall) 
2a: exmem.rt=ifid.rs(8) 
                     =ifid.rt(10) 
   

L 

1a: ifid.rt=pre.rs(stall) 
              =pre.rt(stall) 
2a: memwb.rt=idex.rs(3) 
                      =idex.rt(4) 
 

1a: ifid.rt=pre.rs(stall) 
2a: memwb.rt=idex.rs(3) 
 

1a: ifid.rt=pre.rs(stall) 
2a: memwb.rt=idex.rs(3) 
 

1a: ifid.rt=pre.rs(stall) 
              =pre.rt(stall) 
2a: memwb.rt=idex.rs(3) 
                      =idex.rt(4) 
 

1a: ifid.rt=pre.rs(stall) 
2a: idex.rt=pre.rs(stall) 
   

1a: ifid.rt=pre.rs(stall) 
              =pre.rt(stall) 
2a: idex.rt=pre.rs(stall) 
                =pre.rt(stall) 
   

S                 

JR                 

LUI 

1a: exmem.rt=idex.rs(11) 
                      =idex.rt(12) 
2a: memwb.rt=idex.rs(13) 
                      =idex.rt(14) 
 

1a: exmem.rt=idex.rs(11) 
2a: memwb.rt=idex.rs(13) 
 

1a: exmem.rt=idex.rs(11) 
2a: memwb.rt=idex.rs(13) 
 

1a: exmem.rt=idex.rs(11) 
                     =idex.rt(12) 
2a: memwb.rt=idex.rs(13) 
                      =idex.rt(14) 
 

1a: idex.rt=ifid.rs(17) 
2a: exmem.rt=ifid.rs(18) 
   

1a: idex.rt=ifid.rs(17) 
                =ifid.rt(19) 
2a: exmem.rt=ifid.rs(18) 
                     =ifid.rt(20) 
   

B                 

JAL 

1a: exmem.31=idex.rs(21) 
                      =idex.rt(22) 
2a: memwb.31=idex.rs(23) 
                       =idex.rt(24) 
 

1a: exmem.31=idex.rs(21) 
2a: memwb.31=idex.rs(23) 
 

1a: exmem.31=idex.rs(21) 
2a: memwb.31=idex.rs(23) 
 

1a: exmem.31=idex.rs(21) 
                      =idex.rt(22) 
2a: memwb.31=idex.rs(23) 
                       =idex.rt(24) 
 

1a: idex.31=ifid.rs(27) 
2a: exmem.31=ifid.rs(28) 
   

1a: idex.31=ifid.rs(27) 
                  =ifid.rt(29) 
2a: exmem.31=ifid.rs(28) 
                       =ifid.rt(30) 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1). forward exmem.aludata to rs of alu 
(2). forward exmem.aludata to rt of alu 
(3). forward WBdata to rs of alu 
(4). forward WBdata to rt of alu 
(5). forward WBdata to rs of idex reg 
(6). forward WBdata to rt of idex reg 
(8). forward exmem.aludata to rs of idex reg 
(10). forward exmem.aludata to rt of idex reg 
(11). forward ui from exmem to rs of alu 
(12). forward ui from exmem to rt of alu 
(13). forward ui from memwb to rs of alu 
(14). forward ui from memwb to rt of alu 
(15). forward ui from memwb to rs of idex reg 
(16). forward ui from memwb to rt of idex reg 

(17). forward ui from idex to rs of idex reg 
(18). forward ui from exmem to rs of idex reg 
(19). forward ui from idex to rt of idex reg 
(20). forward ui from exmem to rt of idex reg 
(21). forward PC+4 from exmem to rs of alu 
(22). forward PC+4 from exmem to rt of alu 
(23). forward PC+4 from memwb to rs of alu 
(24). forward PC+4 from memwb to rt of alu 
(25). forward PC+4 from memwb to rs of idex reg 
(26). forward PC+4 from memwb to rt of idex reg 
(27). forward PC+4 from idex to rs of idex reg 
(28). forward PC+4 from exmem to rs of idex reg 
(29). forward PC+4 from idex to rt of idex reg 
(30). forward PC+4 from exmem to rt of idex reg 



Book Questions: (USING THE BLUE EDITION) 
 
4.12.1)  
 -pipeline speed is derived by taking the largest latency found in any of the 5 stages 
 -non-pipelined speed is equivalent to the sum of all latencies 
 
 a) pipelined:  500ps    b) pipelined: 200ps 
 non-pipelined: 1650ps    non-pipelined: 800ps 
 
4.12.2) 
 -for a non-pipelined processor, it takes 1 cycle to fully execute an instruction, therefore 
 the instruction latency is simply the same as the clock time 
 -for a pipelined processor it takes 5 cycles to fully execute any given instruction, 
 therefore the total instruction latency is 5 times the clock cycle time 
 
 a) pipelined:  5*500 = 2500ps  b) pipelined: 5*200 = 1000ps 
 non-pipelined: 1650ps    non-pipelined: 800ps 
 
4.12.3)  
 -To increase the clock speed one would ideally split up the stage with the highest latency.  
 
 a) MEM stage;  new clock cycle = 400ps 
 b) IF stage;  new clock cycle = 190ps 
 
4.20.1)  
 There are three possible data dependencies here 
 i) (RAW) Instr needs to read data from register file before it is written 
 ii) (WAW) Instr writes to reg that was previously written to  
 iii) (WAR) Instr writws to reg that was previously read from 
 
 a)  Instr1 & Instr2 (WAR) 
  Instr3 & Instr4 (WAR) 
  Instr1 & Instr3 (RAW) 
  Instr2 & Instr3 (RAW) 
  Instr2 & Instr4 (RAW) 
  Instr3 & Instr4 (RAW) 
  Instr1 & Instr3 (WAW) 
  
 b) Instr1 & Instr2 (WAR) 
  Instr1 & Instr2 (RAW) 
  Instr1 & Instr3 (WAR) 
  Instr1 & Instr3 (WAW) 
  Instr2 & Instr4 (WAR) 
  Instr2 & Instr3 (WAR) 
  Instr3 & Instr4 (WAR) 
  Instr3 & Instr4 (RAW) 



 
4.20.2) 
 For the 5 stage pipeline we only have to worry about read after write. Most cases can be 
avoided by using forwarding but some instances like a load followed by a read are unavoidable 
hazards. Therefore, part a has no hazards to worry about (assuming the reg file is falling edge 
triggered. part b has one data hazard between instr 3 and 4. 
 
4.24.1) 
 -accuracy is determined by the number of correct branches taken divided by the total 
 number of branch decisions 
 
 a) always take: 75% (3/4) 
     always nt: 25% (1/4)   
 
 b) always take:60% (3/5) 
      always nt: 40% (2/5) 
 
4.24.2) 
 -starts off in predict branch not taken state and moves around state machine depending on 
 correctness of decisions. Considering only the first 4 branch decisions... 
 
 a) 0% (all predictions are incorrect) 
 b) 25% (3rd prediction is correct) 
 
4.24.3) 
 -eventually a steady state is reached in the prediction pattern such that it begins every 
 iteration in the same state 
 
 a) eventually it settles in the top left state and the accuracy is 75% 
 pattern is T,T,NT,T ->  correct, correct, incorrect, correct  
 
 b) eventually it settles in the bottom right state and the accuracy is 40% 
 pattern is T,T,T,NT,NT -> incorrect, correct, correct, incorrect, incorrect 
  



Demonstration of Instructions: 
 
 Many changes were made to the original MIPS processor to make it pipelined so it is 
important to show that it still functions as expected. This section is dedicated to showing the 
complete functionality of all 29 of the base MIPS instructions by individually testing each one 
(in some cases more than once) with custom test programs. The first such test program is 
designed to examine all of the logical instructions in the MIPS instruction set and the code is 
given below: 
 

lui  $1, $0, 0x2568  
ori  $1, $1, 0xABEF 
lui  $2, $0, 0x3A97 
ori  $2, $2, 0x5BE0 
andi $3, $1, 0x5BE0 
 
nor $4, $1, $2 
or $5, $2, $1 
and $6, $1, $2 
 
sll $7, $1, 8 
sll $7, $1, 16 
srl $8, $1, 8 
srl $8, $1, 16 

 
 
 The first instructions to be examined are the load upper immediate, OR immediate, and 
the AND immediate instructions because they are so widely used for initializing registers. The 
annotated waveform provided on the next page shows the execution of the first five instructions 
in this program which initializes the registers. Now would be a good time to point out the 
differences that the pipeline introduces to interpreting the waveform results. In the non-pipelined 
version the results of any instruction was available on the clock cycle immediately following the 
instruction. Here that is not the case as there is a multicycle delay from when the instruction is 
fetched to when it is fully executed. We can examine the first instruction in more detail to see 
how this works. 
 In clock cycle 1, the first instruction is being fetched from the instruction memory 
(instruction fetch stage). In the next clock cycle, the instruction signal (located in the instruction 
decode stage) now displays the instruction that was previously fetched which is then decoded 
and sent to the register file. Clock cycle 3 is the execute stage, where the data fetched from the 
register file is usually (not in this case) sent through the ALU for some sort of computation. 
Clock cycle 4 is the memory access stage where data is either written to, or read from data 
memory. Finally clock cycle 5 is the write back stage where the data is written to the destination 
register in the register file. Notice that in my design I used a falling edge triggered register file, 
so the data is stored to the register file, and thus available for reads BEFORE the next rising 
edge. Thus, whenever an instruction appears in the instruction field in a waveform, its results 
will be written to the register file after 2 rising clock edges. 
 



 

 
 
 
 The next waveform shows the operation of the basic logic instructions AND, OR, and 
NOR. All three cases use the input values 0x2568ABEF and 0x3A975BE0. 
 

 
 
 
 
 



The next waveform shows the operation of the shift left logical left and right instructions. In 
every case it operates on the value 0x2568ABEF. Shifts of 8 and 16 are performed in both 
directions to be thorough. 
 

 
 

 The next program investigates every iteration of the set less than instruction. It basically 
works by testing the unsigned and signed version of the set less than instruction with the input -1 
and 1. In the case of the signed operation, the -1 is interpreted as being less than 1 which is true 
and thus results in the destination register getting set to 1. In the case of the unsigned operation, 
the -1 is interpreted as approximately 4 billion which of course is not less than 1. Thus for the 
unsigned operation, the result is false and the destination register is set to 0. 
 
 The code for this test and waveform is provided below: 
 

lui $1, $0, 0xFFFF 
ori $1, $1, 0xFFFF 
ori $2, $0, 1 
slt $3, $1, $2 
sltu $3, $1, $2 
slti $3, $1, 1 
sltiu $3, $1, 1 

 
 
 



 
 
 The next test will demonstrate all of the branch instructions functioning correctly. For the 
sake of thoroughness, it shows both when a branch is taken and when it is not.  It basically works 
by first loading values to be compared into registers $t0, $t1 and $t2. It then proceeds by 
showing a case of BEQ not branching, followed by a case where it does branch. The same is 
done for the BNE instruction. It finally ends by looping infinitely. The code and waveform are 
provided below: 
 

main: ori $t0, $0, 50 
 ori $t1, $0, 100 
 ori $t2, $0, 50 
 beq $t0, $t1, beq1 
 beq $t0, $t2, beq2  
beq1: ori $t3, $0, 0x00FF  
beq2: ori $t3, $0, 0x00AA 
 bne $t0, $t2, bne1  
 bne $t0, $t1, loop 
bne1: ori $t3, $0, 0x00FF  
loop: bne $t0, $t1, loop 

 



 
 
 The next test examines all three of the jump instructions. I utilize ori instructions as a 
way of keeping track of where the program is. Correctly functioning code should write a 
sequence of A, B, and C  to register 1 with a value of FFFF indicating an error occurred. It starts 
by calling the jump instruction which skips to a JAL. The JAL correctly writes the return address 
to $ra but instead of using $ra, I use my own return address in register $2 equal to the "loop" 
label. The instruction correctly executes and the program proceeds to loop infinitely. The code 
and waveform are provided below: 
 

main: 
 ori $1, $0, 0xAAAA 
 j target 
 ori $1, $0, 0xFFFF 
 ori $1, $0, 0xFFFF 
 ori $1, $0, 0xFFFF 
 ori $1, $0, 0xFFFF 
target:  ori $1, $0, 0xBBBB 
 jal dest 
 ori $1, $0, 0xDDDD 
 ori $1, $0, 0xFFFF 
 ori $1, $0, 0xFFFF 
loop: beq $0, $0, loop 
dest: lui $2, $0, 0x1000 
 ori $2, $2, 0x002C 
 ori $1, $0, 0xCCCC 
 jr $2 

 



 
  
 The next test demonstrates all of the arithmetic operations. It basically loads registers 1-4 
with values and uses them throughout the rest of the code to perform operations. It should be 
noted that functionally there is no difference between ADD and ADDU, or SUB and SUBU. The 
only difference is that the signed versions can set the overflow flag, while the unsigned versions 
cannot. We do not deal with the overflow flag in this class however, so these differences are of 
no consequence to us. The code and waveform are given below: 
 
 

ori $1, $0, 1 
ori $2, $0, 2 
ori $3, $0, 3 
ori $4, $0, 4 
add $5, $2, $3 
addu $6, $3, $3 
addi $7, $1, 6 
addiu   $8, $3, 5 
sub $9, $4, $1 
subu $10, $1, $4 

 
 
 
 
 
 
 
 
 
 
 



Arithmetic test 

 
 
 The final test examines the load and store operations. Stores are tested by using store 
word, store half word, and store byte to store the quantity 0xABCD1234 to data memory. They 
are then recovered using the load word instruction. Loads are tested by first storing the quantity 
0xBAD2BEEF to memory. The value is then recovered using the load word, load half word, and 
load byte instructions. The code is provided below: 
 

lui $1, $0, 0xABCD 
ori $1, $1, 0x1234 
lui $2, $0, 0xBAD2 
ori $2, $2, 0xBEEF 
lui $3, $0, 0x1000  
sw $1, 0($3) 
sh $1, 4($3)  
sb $1, 8($3) 
lw $4, 0($3) 
lw $4, 4($3) 
lw $4, 8($3) 
sw $2, 0($3) 
lw $4, 0($3) 
lhu $4, 0($3) 
lbu $4, 0($3) 

 
 
 



The waveform below shows the test for the store operations: 

 
 
The waveform below shows the test for the load operations: 

 
 



Hazard Detection and Forwarding: 
 
 As was discussed previously, without forwarding and stalling the pipelined processor 
would not function as expected. Therefore it is very important that the processor hold up to 
rigorous testing of its hazard detection and forwarding capabilities. With this in mind a test 
program was provided which examines many of the instances in which hazards occur. The 
decoded assembly is provided below: 
 

1   lui $5, 0x0302 
2   ori $5, $5, 0x0100 
3   ori $6, $0, 2312 
4   lui $29, 0x1000 
5   sw $5, 0($29) 
6   sh $6, 4($29) 
7   ori $6, $0, 2826 
8   sh $6, 6($29) 
9   lui $30, 4096 
10   ori $30, $30, 8 
11   add $15, $30, $0 
12 notmain: lbu $18, 0($29) 
13   lbu $17, 4($29)  
14   add $16, $17, $18 
15   slti $10, $16, 11 
16   beq $10, $0, case2 
17   add $17, $16, $18 
18   j case3 
19 case2:  sub $17, $16, $18 
20 case3:  slti $10, $17, 11 
21   beq $10, $0, case4 
22   add $18, $17, $16 
23   j end 
24 case4:  sub $18, $16, $17 
25 end:  sb $18, 0($fp) 
26   addi $30, $30, 1 
27   addi $29, $29, 1 
28   bne $29, $15, notmain 
29   ori $19, $0, 8 
30   subu $29, $29, $19 
31   lw $1, 0($29) 
32   lw $2, 4($29) 
33   lw $3, 8($29) 
34   lw $4, 12($29) 
35 here:  j here  

 
 The rest of the report will be annotated waveform simulations of this program which 
point out all of the major data hazards and how they are handled. 



Instructions 1 - 6 contains a few hazards that are solved using forwarding. 

 
 
 
Instructions 7 - 11 contains some more instructions where forwarding solves the issue 

 



Instructions 13 - 16 contains the first hazard that requires a stall to fix. Note that some 
forwarding is ignored due to the fact that the stall flushes the control lines. 

 
 
 
Instruction 20 & 21 contains another hazard solved by forwarding. 

 
 



 Instruction 27 & 28 contains another instance of forwarding, but also shows off a branch 
for the first time. My design branches in the mem stage which means that some instructions 
accumulate in the pipeline that should  not execute when a branch occurs. To solve this I simply 
let the instructions proceed normally unless a branch occurs, in which case I flush all control 
lines for the three instructions that follow the branch. In effect this turns those instructions into 
nops.  
 

 
 
From here the program begins to loop many times wherein it simply repeats section of code that 
I have already covered. Therefore, I will move on to the end of the program where more hazards 
await. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Instructions 29 - 35 contain the last hazards within the program. After forwarding takes care of 
the issues the program proceeds to loop forever. 
 

 
 
  



The waveform below shows the final values of the program.  

 
 
 These final values are in agreement with the values obtained using MIPSim which leads 
me to conclude that my design passed the hazard stress test.  
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