
Assignment 5 Report
Long Nguyen

EEL4713

4/18/2012

SECTION 1: INTRODUCTION

This lab focuses on taking the previous lab’s single cycle processor and implementing a pipelined processor. A pipelined processor takes the single cycle

processor and overlaps instructions over the course of several stages. The book provides an example of a program being executed in both a single

cycle and pipelined processor.

It is evident that this approach is much more efficient and faster. This does not mean the pipeline increases the rate instructions are completed, it

simply increases the throughput of the processor and does not affect execution time. The pipeline will have 5 stages, instruction fetch, instruction

decode, execution, memory access, and write back. Instruction fetch will retrieve instructions from memory. The pipeline will then read the register file

while decoding the instructions. The next stage will execute the instructions. Following that, data memory will be read and accessed as needed. The

final stage writes the result back into the register file.

Pipelining introduces hazards into the processor. These vary from data to structural and control hazards. A common cause of the hazards is the

possibility that data read by an instruction isn’t written to a register in time for the next instruction to use. Hazards mainly deal with similar issues

when reading registers and from memory and the timing of the instruction. In order to solve these hazards, the pipeline also introduces a Hazard

Detection Unit and a Forwarding unit. These new hardware pieces add stalls to the pipeline or flush the registers as needed to solve the hazards.

Stalls create bubbles in the pipeline after an instruction so that as the next instruction progress, there is a gap or bubble between the previous. A

forwarding unit that data early from registers later in an instruction and passes it on early to the next instruction. This avoids conflicts where an

instruction needs data written from the previous instruction, for example the result from an alu is called before the WB stage in a previous instruction.

The hazard table is as follows, provided by the magnificent TA Scott:

 R AI L S JR LUI B JAL

R

1a: exmem.rd=idex.rs(1)

 =idex.rt(2)

2a: memwb.rd=idex.rs(3)

 =idex.rt(4)

3a: memwb.rd=ifid.rs(5)

 =ifid.rt(6)

1a: exmem.rd=idex.rs(1)

2a: memwb.rd=idex.rs(3)

3a: memwb.rd=ifid.rs(5)

1a: exmem.rd=idex.rs(1)

2a: memwb.rd=idex.rs(3)

3a: memwb.rd=ifid.rs(5)

1a: exmem.rd=idex.rs(1)

 =idex.rt(2)

2a: memwb.rd=idex.rs(3)

 =idex.rt(4)

3a: memwb.rd=ifid.rs(5)

 =ifid.rt(6)

1a: idex.rd=ifid.rs(stall)

2a: exmem.rd=ifid.rs(8)

3a: memwb.rd=ifid.rs(5)

1a: idex.rd=ifid.rs(stall)

 =ifid.rt(stall)

2a: exmem.rd=ifid.rs(8)

 =ifid.rt(10)

3a: memwb.rd=ifid.rs(5)

 =ifid.rt(6)

AI

1a: exmem.rt=idex.rs(1)

 =idex.rt(2)

2a: memwb.rt=idex.rs(3)

 =idex.rt(4)

3a: memwb.rt=ifid.rs(5)

 =ifid.rt(6)

1a: exmem.rt=idex.rs(1)

2a: memwb.rt=idex.rs(3)

3a: memwb.rt=ifid.rs(5)

1a: exmem.rt=idex.rs(1)

2a: memwb.rt=idex.rs(3)

3a: memwb.rt=ifid.rs(5)

1a: exmem.rt=idex.rs(1)

 =idex.rt(2)

2a: memwb.rt=idex.rs(3)

 =idex.rt(4)

3a: memwb.rt=ifid.rs(5)

 =ifid.rt(6)

1a: idex.rt=ifid.rs(stall)

2a: exmem.rt=ifid.rs(8)

3a: memwb.rt=ifid.rs(5)

1a: idex.rt=ifid.rs(stall)

 =ifid.rt(stall)

2a: exmem.rt=ifid.rs(8)

 =ifid.rt(10)

3a: memwb.rt=ifid.rs(5)

 =ifid.rt(6)

L

1a: ifid.rt=pre.rs(stall)

 =pre.rt(stall)

2a: memwb.rt=idex.rs(3)

 =idex.rt(4)

3a: memwb.rt=ifid.rs(5)

 =ifid.rt(6)

1a: ifid.rt=pre.rs(stall)

2a: memwb.rt=idex.rs(3)

3a: memwb.rt=ifid.rs(5)

1a: ifid.rt=pre.rs(stall)

2a: memwb.rt=idex.rs(3)

3a: memwb.rt=ifid.rs(5)

1a: ifid.rt=pre.rs(stall)

 =pre.rt(stall)

2a: memwb.rt=idex.rs(3)

 =idex.rt(4)

3a: memwb.rt=ifid.rs(5)

 =ifid.rt(6)

1a: ifid.rt=pre.rs(stall)

2a: idex.rt=pre.rs(stall)

3a: memwb.rt=ifid.rs(5)

1a: ifid.rt=pre.rs(stall)

 =pre.rt(stall)

2a: idex.rt=pre.rs(stall)

 =pre.rt(stall)

3a: memwb.rt=ifid.rs(5)

 =ifid.rt(6)

S

JR

LUI
1a: exmem.rt=idex.rs(11)

 =idex.rt(12)

2a: memwb.rt=idex.rs(13)

1a: exmem.rt=idex.rs(11)

2a: memwb.rt=idex.rs(13)

1a: exmem.rt=idex.rs(11)

2a: memwb.rt=idex.rs(13)

1a: exmem.rt=idex.rs(11)

 =idex.rt(12)

2a: memwb.rt=idex.rs(13)

1a: idex.rt=ifid.rs(17)

2a: exmem.rt=ifid.rs(18)

1a: idex.rt=ifid.rs(17)

 =ifid.rt(19)

2a: exmem.rt=ifid.rs(18)

 =idex.rt(14)

3a: memwb.rt=ifid.rs(15)

 =ifid.rt(16)

3a: memwb.rt=ifid.rs(15) 3a: memwb.rt=ifid.rs(15) =idex.rt(14)

3a: memwb.rt=ifid.rs(15)

 =ifid.rt(16)

3a: memwb.rt=ifid.rs(15) =ifid.rt(20)

3a: memwb.rt=ifid.rs(15)

 =ifid.rt(16)

B

JAL

1a: exmem.31=idex.rs(21)

 =idex.rt(22)

2a: memwb.31=idex.rs(23)

 =idex.rt(24)

3a: memwb.31=ifid.rs(25)

 =ifid.rt(26)

1a: exmem.31=idex.rs(21)

2a: memwb.31=idex.rs(23)

3a: memwb.31=ifid.rs(25)

1a: exmem.31=idex.rs(21)

2a: memwb.31=idex.rs(23)

3a: memwb.31=ifid.rs(25)

1a: exmem.31=idex.rs(21)

 =idex.rt(22)

2a: memwb.31=idex.rs(23)

 =idex.rt(24)

3a: memwb.31=ifid.rs(25)

 =ifid.rt(26)

1a: idex.31=ifid.rs(27)

2a: exmem.31=ifid.rs(28)

3a: memwb.31=ifid.rs(25)

1a: idex.31=ifid.rs(27)

 =ifid.rt(29)

2a: exmem.31=ifid.rs(28)

 =ifid.rt(30)

3a: memwb.31=ifid.rs(25)

 =ifid.rt(26)

SECTION 2:

SECTION 3: INSTRUCTION DEMONSTRATION

This section will show the simulation of the working pipeline using the lab4demo.mif. However due to reasons to be expounded upon later, this

pipeline is faulty. As such anything that works will be explained and any faults will be shown.

First off, the pipeline can be seen correctly incrementing PC and Inst Fetch as the clock cycles go on. 5 clock cycles should produce the first WB stage

which is then written to ra(1) as seen in the figure.

After nights of trouble shooting, however, the pipeline could not correctly write ra(30) in the right cycle. However, I was able to stall the pipeline and

add a clock cycle before the addition takes place in ra(4). While I was able to stall, it still was not performing as it should and in the end did not help.

Because I was unable to get the simulation working, the rest of values began to skew as the incorrect operations were performed. However, I can

compare the simulation with the pipeline without hazard detection used in the first checkpoint of the lab and the values do match up correctly.

The simulation correctly runs through the instructions up until the final instructions of the lab4demo mif file.

There are a number of possible reasons why the pipeline failed to work correctly. To troubleshoot my pipeline I began by checking the signal path in

the bdf (Yes I built it in BDF because I could visually see everything easier). Screenshots of the BDF are attached in the Appendix of the lab report.

Following example pipelines in the book and in the lecture slides, everything should be correctly wired. Moving on, I checked my controller signals. I am

mostly confident that the controller signals do not change because of the additional pipeline registers. With that in mind, since the pipeline correctly

functions without hazard detection it stands to reason that something went wrong when adding the Hazard Detection Unit. Before adding a stall to the

pipeline, I tried performing a flush of the registers as this would be more effective. To do this, I tied the Branch Detection logic gates to the clr

functions of the pipeline registers. If a branch was detected, the registers would flush, clearing the instructions that were loaded beforehand. Flushing

caused anomalies in the pipeline register which did not help solve what was wrong with the pipeline. I rebuilt the pipeline twice from scratch and

encountered the same problems. This made me think that the hardware vhdl files I wrote were wrong but simulating the hardware did not produce any

results. Needless to say, this leads to the present with no progress being made.

SECTION 4: HAZARD DETECTION

Without a working pipeline I did not move in further into this simulation. However, I will decode the mif as best as I can. The numbered mif file is as

follows:

1- lui $5, 0x0302

2- ori $5, $5, 0x0100

3- ori $6, $0, 2312

4- lui $29, 0x1000

5- sw $5, 0($29)

6- sh $6, 4($29)

7- ori $6, $0, 2826

8- sh $a2, 6($29)

9- lui $30, 4096

10- ori $30, $30, 8
11- add $15, $30, $0
12- notmain:
13- lbu $18, 0($29)
14- lbu $17, 4($29)
15- add $16, $17, $18
16- slti $10, $16, 11
17- beq $10, $0, case2
18- add $17, $16, $18
19- j case3
20- case2:
21- sub $17, $16, $18
22- case3:
23- slti $10, $17, 11
24- beq $10, $0, case4
25- add $18, $17, $16
26- j end
27- case4:
28- sub $18, $16, $17
29- end:
30- sb $18, 0($fp)
31- addi $30, $30, 1
32- addi $29, $29, 1
33- bne $29, $15, notmain
34- ori $19, $0, 8
35- subu $29, $29, $19
36- lw $1, 0($29)
37- lw $2, 4($29)
38- lw $3, 8($29)
39- lw $4, 12($29)
40- here:
41- j here

From line 1 to 2 ,$5 is loaded in the first instruction but also ORI in the second instruction. This would require a stall in order for ORI to correctly

perform.

From line9 to line 10, line 11, the consecutive LUI and ORI and ADD instructions share the same registers creating a data hazard that can be solved

with stalling.

From line 13 to line 15, $18 needs to be forward in order avoid data dependence.

From line 14 to 15, there is a data hazard involving $17 that can be solved with forwarding.

Line 17, 24, and 33 have branch instructions which create need to be stalled or flushed.

The program ends with 4 LW instructions that load the registers a0-a4 with the following values: 110a0908,03020100,00000b0a,00000000.

APPENDIX

BDF Screen captures

 IF/ID

ID/EX

EX/MEM and MEM/WB

