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Introduction 

For assignment 5 we were tasked with creating a fully functional pipelined MIPS processor. I 

used the code and general structure of assignment 4 to design the multi staged version in this lab. There 

are a number of benefits to using a pipelined datapath as opposed to a single cycle datapath, the most 

significant being a large speedup. We are able to produce a faster processor because we don’t need to 

wait for every instruction to complete before beginning the next. In a single cycle processor, after we 

are done reading the data from a register and inputting it to the ALU we aren’t doing anything else with 

the register until we need to write back to it. Using a pipelined version enables us to break the datapath 

up into five separate stages, allowing us to work on up to five instructions at once. This cuts out the 

slowdown of the critical path that we saw in our single cycle design. 

Each one of the five stages mentioned above contains parts of the original single-cycle datapath 

with additional hardware needed to operate the pipelined version. The five stages consist of Instruction 

Fetch (IF), Instruction Decode (ID), Execute (EX), Memory (MEM), and Write Back (WB). Below is a short, 

general overview of each of the stages. 

• IF 

o The main components in this stage are the Program Counter (PC), PC 

incrementer/adder, and the Instruction Memory. This stage receives signals 

from the MEM stage as well because that is where the branch mux is located, 

which supplies the PC with the next address to load. 

• ID 

o This stage consists of the register file, controller, and jump mux. All the control 

signals are decoded and generated here. Because of this the register that is 

between ID and EX is very large as most of the control signals have to pass 

through here. This stage also contains the extending unit to either sign extend 

or zero extend immediate values. It receives data and signals from the WB stage 

because of the register file needing to be written back to. 

• EX 

o This stage contains the ALU, forwarding muxes, and the JR mux. It also has a 

mux that takes care of the register destination which is routed through the 

entire pipeline and back to the ID stage to tell the register file what address to 

write to. 

• MEM 

o This stage contains the branching logic, branch mux, data memory, and 

decoding unit. As mentioned previously, this is where the incremented PC signal 

departs from. The output of the branch mux will contain either the PC+4 signal, 

address we want to jump to, the address to return to after a JR, or the address 

to branch to. 

• WB 



o This stage is the smallest and only contains the mux to determine which output 

to route to the data of the register file in the ID stage. It essentially does exactly 

what its name implies, just writes all the data back to previous stages if it hasn’t 

already been sent back. 

In my datapath design I used large register files in between the five stages. Each one of these 

register files took in inputs from the previous stage and passed them through to the next stage. The 

signals that were passed through were either needed in a future stage or following the path back to the 

register file. I further broke these register files up into smaller files. The main register handled the 

unique signals going from stage to stage, while smaller register files took in the control signals only and 

carried them to their appropriate stages. You can see this in the sample datapath image at the end of 

this section. 

 While a pipelined design is much faster it also presents a number of new challenges. First the 

single cycle design needs to be converted to a pipelined datapath by adding large registers between our 

five cycles to stall the signals every clock cycle. This can become cumbersome because we need to pass 

certain signals through the registers, some signals need to avoid the registers, and some signals need to 

be passed backwards to over cycles from various later stages. 

 The main problem we need to deal with when designing the pipelined system is data hazards. 

There are many different hazards that need to be resolved and just figuring out which instructions 

create a hazard is a difficult task. A hazard can come in two general forms. The first is resolved using 

stalling. If we have an instruction that relies on data from another instruction which hasn’t completed 

yet and needs to complete either completely or partially, we will need to add nop instructions to stall it. 

Stalls are mainly used when we use a load instruction (lhu, lbu, lui, lw) followed closely by another 

instruction that uses the data that is being loaded into our register file still. Stalling has the downside of 

slowing down our system. A nop is essentially just a blank instruction that does nothing, so inserting 

them into our datapath creates more instructions. The other hazard is resolved using forwarding. This 

hazard is again encountered when an instruction relies on a recent past instruction, but instead of 

needing to stall the entire pipeline and wasting those extra cycles, we grab the data we need from a 

future cycle and route it around the registers to the cycle that needs it, injecting it into the necessary 

signal path. This preserves our increased speedup but has the downside of being difficult to implement 

for the designer. I needed to again realize all the instruction combinations that would require 

forwarding, then build a forwarding unit into my datapath, route all the required signals into and out of 

it, add any additional blocks into the cycles or datapath to keep functionality, and design the logic to not 

only keep our initial design working but also the added forwarding and stalling. 

 An example of a hazard would be if the program added to values and stored the result into 

register 1. If the next instruction uses register 1 as a source register than the data will not yet be 

available to it. As I mentioned before there are a number of combinations of hazards, but primarily you 

need to look at the current instruction and the 3 instructions following it. If any of the 3 instructions that 

follow the current instruction use its value you are likely to run into a hazard. This can be slightly 

reduced depending on how you design your datapath. Instead of clocking my register file on the rising 



edge, I instead used the falling edge. This allows you to n

follow the current instruction by 3 spots (though you still need to take care of instruction 1 or 2 places 

ahead). This works by allowing the WB stage to output the data needed at the register file in time. The 

WB operates off of the normal rising edge clock and sends its data to the register file write port. Because 

the register file waits until the falling edge the data that it needs is already available and no forwarding 

is required. 

 To implement the forwarding in hardware you need a unit that handles the logic of stalls and 

forwards as well as a mux in front of both inputs to the ALU. Again this can vary depending on how the 

datapath is designed. The hazard table given to us shows that we actually need two mu

front of the ALU and the other set in front of the ID/EX register. The ID/EX muxes are only used for 

forwarding unsigned integers encountered during hazards with the LUI instruction. To get rid of this 

problem I changed the way my LUI instr

decoder or through its own logic, I passed the value straight into the ALU. If the LUI value goes into the 

ALU like a normal logical instruction any hazards encountered will be dealt with using t

hardware and logic used for the rest of the hazards, with the set of muxes in front of the ALU taking care 

of forwarding. 

 My initial hazard table was incomplete, as I neglected to add certain instruction combinations 

that would produce hazards. I had to add all of the 

instructions. I also made various mistakes on the correct forwarding logic for certain hazards. Below is 

the hazard table I used to design my forwarding and stalling units. This was p

edge, I instead used the falling edge. This allows you to not have to worry about any instructions that 

follow the current instruction by 3 spots (though you still need to take care of instruction 1 or 2 places 

ahead). This works by allowing the WB stage to output the data needed at the register file in time. The 

WB operates off of the normal rising edge clock and sends its data to the register file write port. Because 

the register file waits until the falling edge the data that it needs is already available and no forwarding 

ng in hardware you need a unit that handles the logic of stalls and 

forwards as well as a mux in front of both inputs to the ALU. Again this can vary depending on how the 

datapath is designed. The hazard table given to us shows that we actually need two mu

front of the ALU and the other set in front of the ID/EX register. The ID/EX muxes are only used for 

forwarding unsigned integers encountered during hazards with the LUI instruction. To get rid of this 

problem I changed the way my LUI instruction was handled. Instead of doing it inside of either the 

decoder or through its own logic, I passed the value straight into the ALU. If the LUI value goes into the 

ALU like a normal logical instruction any hazards encountered will be dealt with using t

hardware and logic used for the rest of the hazards, with the set of muxes in front of the ALU taking care 

My initial hazard table was incomplete, as I neglected to add certain instruction combinations 

had to add all of the lui instructions as well as the branching and jump 

instructions. I also made various mistakes on the correct forwarding logic for certain hazards. Below is 

the hazard table I used to design my forwarding and stalling units. This was provided to the class.

Figure 1 - Hazard table 
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Figure 2 - Simplified view of the pipelined datapath

 

  

Simplified view of the pipelined datapath and stages 

 



Book Questions 

Using the blue book. 

4.12.1 

a) Pipelined = 500ps, non-pipelined = (500+100+350+400+300) = 1650ps 

b) Pipelined = 200ps, non-pipelined = (200+150+120+190+140) = 800ps 

4.12.2 

a) Pipelined = 1650ps (with forwarding), non-pipelined = 1650ps 

b) Pipelined = 800ps (with forwarding), non-pipelined = 800ps 

4.12.3 

Split the highest latency stage 

a) MEM, new time = 400ps 

b) IF, new time = 190ps 

4.20.1 

a lw followed by add (2 apart) 

lw followed by sw (3 apart) 

add followed by sw (1 apart) 

add followed by add (1 apart) 

add followed by sw (2 apart) 

b add followed by sw (1 apart) 

add followed by lw (2 apart) 

sw followed by lw (1 apart) 

sw followed by add ( 2 apart) 

 

4.20.2 

a • With forwarding 

o none 

• Without forwarding 

o lw followed by add (2) 

o add followed by add (1) 

o add followed by sw (2) 

o add followed by sw (1) 

b • With 

o lw followed by add (1) 

• Without forwarding 

o add followed by sw (1) 

o lw followed by add (1) 



4.24.1 

a) Always taken = 75%, never taken = 25% 

b) Always taken = 60%, never taken = 40% 

4.24.2 

a) 0% 

b) 25% 

2.24.3 

a) 75% 

b) 60% 

 

  



Section 3: Instruction 

JR 

Taken from lab4demo.mif file. 

Instruction: 

lui 7,0x0000 

ori 7,7,0x308 

jr 7 

This will store 0x00000308 into register 7 and then jump to this address. Forwarding is needed because 

register 7 does not have the entire 0x00000308 value when JR needs it, so lui is forwarded for the ori 

instruction, and then that is forwarded for the JR instruction. 

 

Figure 3 - JR going to contents of register 7 

 

Figure 4 - JR, showing contents of register 7 



Logical Functions 

Test Code MIF 

lui $a0, $zero, 0x2568 
lui $a1, $zero, 0x3a97 

ori $a0, $a0, 0xabef 
ori $a1, $a1, 0x5be0 
and $a2,$a0,$a1 

andi $a3,$a0,0x4510 
or $s0,$a0,$a1 
nor $s1,$a0,$a1 

sll $s2,$a0,0x4 
srl $s3,$a0,0x2 

 

 

Figure 5 - Logical function test 



 

Figure 6 - Logical function test 

BEQ/BNE 

Test Branch MIF 

ori $s0,$0,0x1000 

ori $s1,$0,0x2000 

ori $s2,$0,0x1000 

beq $s0,$s1,branch1 

beq $s0,$s2,branch1 

lui $s4,$zero,0xFFFF 

branch1:  

bne $s0,$s2,end 

bne $s0,$a1,end 

lui $s5,$zero,0xFFFF 

end:  

lui $s6,$zero,0xFFFF 



 

 

Figure 7 - Branch testing 



 

Figure 8 - Branch testing outcome 

SLT, SLTU, SLTI, SLTIU 

SLT/SLTU/SLTI/SLTIU Test MIF 
lui $a0,0xFF11 

lui $s0,0xFFFF 

ori $s0,$s0,0xFFFF 

ori $s1,$s1,0x1234 

ori $s2,$s2,0x2345 
slt $t0,$s1,$s2 

slt $t1,$s2,$s1 

sltu $t3,$s0,$s1 

sltu $t4,$s1,$a0 

slti $t5,$s1,0x4000 

slti $t6,$s2,0x1900 
sltiu $t7,$a0,-6 

sltiu $t8,$a0,0x4161 

The difference between SLT and SLTU as well as SLTI and SLTIU is how the code perceives the data. 

Because my main example images didn’t show the differences well enough I created another short MIF 

file to test the signed and unsigned version against two identical numbers. This can be seen and 

explained in the image below. The same concept applies to SLTI vs SLTIU as well. 

 

Figure 9 - Signed vs Unsigned 



 

Figure 10 - SLT testing 

 

Figure 11 - SLT testing 

SUB, SUBU, ADD, ADDU 

The main difference between the ADD vs ADDU and SUB vs SUBU is that both of signed versions produce 

overflow while the unsigned version do not. 



Test MIF code 
lui $s0,0x8193 

addi $s1, $s1,0x2468 

addi $s2,$s2,0x1234 

add $t0,$s1,$s2 

addu $t1,$s0,$s1 
addu $t2,$s1,$s2 

sub $t3,$s1,$s0 

sub $t4,$s1,$s2 

subu $t5,$s1,$s0 

subu $t6,$s1,$s2 

 

 

Figure 12 - SUB/SUBU/ADD/ADDU 



 

Figure 13 - SUB/SUBU/ADD/ADDU 

SW, SH, SB 

Test Code MIF 
lui $9,0x1000 

lui $15,0x0000 

ori $15,$15,0x0000 

sw $15,0($9) 

sw $15,4($9) 
sw $15,8($9) 

lui $10,0xABCD 

ori $10,$10,0x1234 

lui $2,0xffff 

lui $3,0xffff 

sb $10,0($9) 
sh $10,4($9) 

sw $10,8($9) 

lw $11,0($9) 

lw $12,4($9) 

lw $13,8($9) 

 



 

Figure 14 - Setting up the registers for the store test 

 

Figure 15 - Storing the values using SB, SH, and SW 



 

Figure 16 - Using LW to read the values from memory after using SB, SH, and SW 

LW, LHU, LBU 

Test Code MIF 
lui $s0,0x1000 

lui $t0,$zero,0xbad2 

ori $t0,$t0,0xbeef 

ori $s2,$s2,0x0000 
ori $s2,$s2,0x0000 

sw $t0,0($s0) 

lw $t1,0($s0) 

lhu $t2,0($s0) 

lbu $t3,0($s0) 

 



 

Figure 17 - Setting up registers to test LW, LHU, and LBU. Also shows the instructions in the IF stage 



 

Figure 18 - Register values from the result of LW, LHU, and LBU 

 

  



Section 4: Hazard detection and forwarding 

 

I got this working 2 hours before the extended deadline, sorry for the quick images and short 

descriptions, I didn’t plan to be working on it this long. 

I had issues forwarding with my decoder so even though the forwarding worked fine for normal 

instructions, it wasn’t working 100% with load and store instructions. The way I did forwarding for those 

was inside the actual decoder and partially inside the forward unit as well. In the forward unit I watched 

to see if the last instruction had a hazard (so if ex.rt/ex.rs = mem.rd). If so I sent the data from that 

register that needed to be forwarded along with a 1 bit flag signal through the pipeline, into MEM stage, 

and into the decoder. If the flag went true I took that forwarded data as the input, otherwise I took the 

normal data from the pipeline. I also routed the wb.rd as well as the wb.data into the decoder. I 

watched this to see if mem.rd = wb.rd, and if it did I forwarded, or used the wb.data I had brought over. 

This was not a very fun or clean way to do this, but the traditional ways were giving me a lot of 

problems. Everytime I would fix one issue another would come up and I was already behind from other 

problems with the pipelining and previous checkpoints. 

 



 

 



 

 



 

 

 



 

Figure 19 - Values of final registers 

The program ends its execution by going into an infinite loop at the very end. A jump instruction keeps 

the loop going forever. The hazard mif file, when working correctly, outputs the following values 

• $1 = 0x03020100 

• $2 = 0x0b0a0908 

• $3 = 0x0316ff10 

• $4 = 0x110a0908 

 

Full Register output 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 


