

Lab Report 6
Chris Dobson

EEL4713

Section 1: Book Problems
 The Blue non-revised 4th edition was used

6.3.1)

 a)

 b) 13.1992 ms

6.3.2)

 a) *minimum assumes the case where there is no seek time or rotational delay.

 b)

6.15.1)

 a)

 b)

6.15.2)

 a)

 b)

6.15.3)

Raid 4 is more efficient with small reads, because a single block can be accessed from just 1 disk instead

of all the disks like raid 3 requires. Raid 4 also requires less reads to build a new parity block, making

writing more efficient. Raid 3 has no real advantage over raid 4.

6.15.4)

Raid 5 constructs its parity blocks the same as raid 4, but it distributes them across the disks instead of

storing them all on one disk. This prevents the parity disk from bottlenecking the performance during

back to back writes. A single write will not see any improvement.

6.18.1)

 a)

 b)

6.18.2)

 a)

 a)

Section 2: Cacti and SESC simulations

Block Size Tradeoffs

 The first simulation involved testing different block sizes for the L1 instruction cache. The two charts

below summarize the results from the experiment. The first chart shows the different miss rates depending on

the block size, while the second chart shows the change in execution time. The miss rate makes a significant

drop right away, with the decline becoming more gradual as time passes. This indicates that the most gain per

area will be in the smaller block sizes, with the large ones offering similar miss rates. The execution time

follows a different trend. As the block size increases, the execution time starts to go down but turns back up

before long. This is caused by the larger latencies that cacti provided for the larger block sizes.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 500 1000 1500 2000 2500 3000 3500 4000 4500

m
is

s
ra

te

block size

L1 Instruction Cache Miss Rate vs Block Size

0

50000000

100000000

150000000

200000000

250000000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ex
e

cu
ti

o
n

 T
Im

e
 (

cy
cl

e
s)

block size

L1 Instruction Cache Execution Time vs Block Size

 The second simulation involved testing different block sizes of the L1 data cache. The two charts below

summarize the results from the experiment. The first chart shows the different miss rates depending on the

block size, while the second chart shows the change in execution time. The results are significantly different

from before. Increasing the block size actually increase the hit rate. This means the data cache does not have

the same type of locality as the instruction cache. The fact that a larger block size decreases the total number of

blocks available in the table (a fixed total cache size was used) could also be having a significant effect. The

second chart provides some unexpected results. The execution time dips down in the beginning, just like in the

previous example even though the miss rate is increasing. This is likely a byproduct of increasing the L2 cache

at the same rate as the data cache. This brings the execution time gains from the previous simulation into

question. Having the L2 cache independently set to a larger block size was causing SESC to lock up, meaning

the configuration file was likely in error. Meaningful information can still be determined from the cache miss

charts.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000 2500 3000 3500 4000 4500

m
is

s
ra

te

block size

L1 Data Cache Miss Rate vs Block Size

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

180000000

200000000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ex
e

cu
ti

o
n

 T
Im

e
 (

cy
cl

e
s)

block size

L1 Data Cache Execution Time vs Block Size

Cache Associativity Tradeoffs

 This simulation involves simulating different cache associativities for the L1 data cache. The first chart

shows the different miss rates depending on the associativitity, while the second chart shows the change in

execution time. Like in the first case, there is a significant initial drop in miss rate which then levels off as the

associativitity increases further. The case with an associativitity of 32 has almost the same hit rate as the fully

associativite case. The same trend can be seen in the execution time as was present in the previous simulations.

As the associativitity gets larger and larger, the cache latency increases. Considering that the hit rate decrease is

negligible for the larger cases, it's only natural that the execution time should rise sharply.

0

0.005

0.01

0.015

0.02

0.025

1 10 100 1000 10000

m
is

s
ra

te

associativitity

L1 Data Cache Miss Rate vs Associativity Size

116000000

117000000

118000000

119000000

120000000

121000000

122000000

123000000

124000000

125000000

1 10 100 1000 10000

Ex
e

cu
ti

o
n

 T
im

e
 (

cy
cl

e
s)

associativitity

L1 Data Cache Execution Time vs Associativity Size

Cache Size Tradeoffs

 This simulation involves simulating different cache sizes for the L1 instruction cache. The first chart

shows the different miss rates depending on the size, while the second chart shows the change in execution

time. The first chart follows the same trend as two of the previous simulations. The hit rate starts out by

dropping significantly, and then leveling off. The third test case is approximately as efficient as the largest.

The execution time never actually drops however. The change in miss rate never outweighs the hefty increase

in cache latency that is associated with increasing the cache size.

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 200000 400000 600000 800000 1000000 1200000

m
is

s
ra

te

Cache Size

L1 Instruction Cache Miss Rate vs Cache Size

115000000

120000000

125000000

130000000

135000000

140000000

0 200000 400000 600000 800000 1000000 1200000

Ex
e

cu
ti

o
n

 T
im

e
 (

cy
cl

e
s)

Cache Size

L1 Instruction Cache Execution Time vs Cache Size

Overall Cache Performance Experiment

 This simulation involves simulating three different test cases based of the previous results. Each test

case represents an increase in cache latency, while the attributes are maximized to say within that latency. The

data cache was first given an increase in associativitity, because it caused the most significant drop in the trials.

The instruction cache was first made larger and given a larger block size, because those two attributes made the

biggest changes in the previous simulations. The table below summarizes the 3 configurations used, while the

chart below shows the relative execution times. The first case was the fastest by far. The smaller cache

latencies must have been more important than the increased hit rates that went along with them. The fact that

the miss rates were already so low (almost always below 5%) and the miss penalty is not too severe gave the

configuration with the smaller latency a clear advantage.

Test
 Case

Data
Cache Size

Data Cache
Associativity

Data Cache
Block Size

Data Cache
Latency

Instruction
Cache Size

Instruction
Associativity

Instruction
Block Size

Instruction
Latency

1 32768 8 32 4 65536 2 256 4

2 131072 16 32 5 65536 2 512 5

3 65536 32 32 6 262144 2 512 6

105000000

106000000

107000000

108000000

109000000

110000000

111000000

112000000

113000000

114000000

115000000

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Ex
e

cu
ti

o
n

 T
im

e
 (

cy
cl

e
s)

case number

Execution Time

Section 3: Implementing a Simple Data Cache

 This section deals with the addition of a basic two way associativite cache for the data memory of the

pipelined MIPS processor designed in the previous lab. A write through policy and no-write allocate policy

were used, so the cache only effects reads. The diagram below represents the cache system without the control

logic. Whenever a write occurs, the data is written directly to ram (and updated in the cache if that address is

present) so very little has changed during write cycles. Read cycles are controlled by a simple FSM. Whenever

a cache miss, The FSM begins a 4 cycle process that reads each of the 4 words bytes associated with that

address into one of the two possible locations that data can be present in the cache. The location is randomly

chosen. During this process, the rest processor is stalled. When the data is done being read into the cache, the

processor resumes. The total time needed to read the data into the cache is 4 cycles, which is 3 more than the

single cycle needed to read from the cache.

 The point of this cache is to reduce the effect of high memory latency. This could be very use full in a

system where the processor runs much faster than its main working memory, or when the memory has a

relatively long latency. The current implementation on the FPGA would likely see no benefit and only a

performance decrease because the memory is capable of running at the same rate as the CPU with no latency. It

is likely that other technologies exit where even a simple cache system like this would result in a significant

increase in performance (though a write buffer would be necessary to speed up the write process).

Simulations

 Several different simulations are below that show various cache utilizations.

Case 1: Cache write through.

Case 2: Cache Miss

Case3: Cache Hit

Case 4: Cache Write

