
UNIVERSITY OF FLORIDA

Assignment 6
Digital Computer Architecture

James Giandelone

HW Problems(blue book)
6.3.1 Calculate the average time to read or write a 1024-byte sector for each disk listed in the

table.

a)average rotational latency = 1/(7200rpm*2/60) = 4.1666ms

 disk transfer rate = 1024/(34*2^20) = .0287 ms

 disk controller rate = 1024/(480/8*2^20) = .016 ms

average time = 11+4.1666+.0287+.016 = 15.2113 ms

b) average rotational latency = 4.1666ms

 disk transfer rate = 1024/(30*2^20) = .03255 ms

 disk controller rate = 1024/(500/8*2^20) = .0156 ms

average time = 9+4.1666+.03255+.0156 = 13.2 ms

6.3.2 Calculate the minimum time to read or write a 2048 byte sector for each disk listed in the

table.

The minimum time to read will be when the head of the hard drive is already over the correct

sector. Consequently the seek time and rotational latency will be 0. Thus the minimum time will

only be the sum of the disk transfer rate, and the controller transfer rate/

a)disk transfer rate = 2048/(34*2^20) = .0577 ms

 disk controller rate = 2048/(480/8*2^20) = .03255 ms

minimum time = .0577 + .03255 = .09025 ms

b)disk transfer rate = 2048/(30*2^20) = .0651 ms

 disk controller rate = 2048/(500/8*2620) = .03125 ms

minimum time = .0651+.03125 = .09635 ms

6.15.1 Calculate the new parity P' for RAID 3.

a)FEFE XOR A387 XOR F345 XOR FF00 = 513C

b)AB9C XOR 0098 XOR 00FF XOR 2FFF = 8404

6.15.2 Calculate the new parity P' for RAID 4.

note: the tables initial parity value is incorrect which is why the final result of this problem does

not match the parity from previous problem

a)FEFE XOR 00FF XOR 4582 = BB83

b)AB9C XOR F457 XOR A387 = FC4C

6.15.3 Is RAID 3 or RAID 4 more efficient? Are there reasons why RAID 3 would be preferable

to RAID 4?

RAID 4 is more efficient since there are only 2 xor operations compared to RAID 3's 4 xor

operations. To calculate parity for raid 3, you must make 4 disk accesses, while RAID 4 requires

3. RAID 3 has no advantages

6.15.4 RAID 4 and RAID 5 use roughly the same mechanism to calculate and store parity for

data blocks. How does RAID 5 differ from RAID 4 and for what applications would RAID 5 be

more efficient?

RAID 4 has a dedicated parity drive while RAID 5 has alternating drives holding parity.

Consequently, there is no parity drive bottleneck in RAID 5 like there is in RAID 4. RAID 5 will

be more efficient in all applications.

6.18.1 Calculate annual failure rate(AFR) for disks in the table.

a)8760*1000/1000000 = 8.76

b)10512*1000/1500000 = 7.008

6.18.2

a)7 years = 8.76*3/12 + 8.76*11/12 + 8.76*3 + 8.76*2 + 8.76*4 = 142.35

 10 years = 142.35 + 8.76*8+8.76*16 = 459.905

b) 7 years = 7.008 * 3/12 + 7.008 * 11/12 + 7.008*2+7.008*4 = 50.224

 10 years = 50.224+ 7.008*8 + 7.008 * 16 = 218.416

--this is assuming failed drives are being replaced

Instruction Cache Block size Tradeoffs
Question: Plot two graphs: L1 I-cache miss rate (il1_miss_rate in the SESC

simulation output) versus block size, and total execution time (sim_cycle) versus block size.

Discuss your results with meaningful discussion (i.e. do not simply state what can be read off of

the graphs themselves).

Instruction Block Size Tradeoffs

Block Size # of Hits # of Misses Clock Ticks Access

Time(ns)

Hit latency

(cycles)

16 19673709 849376 115976785 .756 3

32 19532470 747424 116009735 .727 3

64 19468904 799960 115678369 .688 3

128 19759259 649771 114832219 .665 3

256 19947205 536890 114179783 .721 3

512 19981596 525871 114813257 .923 4

1024 20010611 499337 115797356 1.53 5

2048 20069377 464166 116953194 1.54 6

 The miss rate graph shows that an increase in block size will decrease the number of

misses. The block size determines the degree to which spatial locality is exploited. Spatial

locality refers to the idea that if a memory location is accessed, there is a high likelihood that the

memory around it will also be accessed. Thus, the increase in block size will cause more

spatially close data to be stored at each cache block - decreasing the miss rate. On the other hand,

if the block size were to be increased to far we would see an increase in the number of misses

due to garbage data being loaded into cache and thus having wasted cache space.

 Read misses are highly detrimental to a processors performance. Consequently, a

decrease in the number of read misses will cause an increase in the CPU performance - which

can be seen in the execution time graph. However, we see that past a block size of 256 the

execution time begins to increase. This is because the time required to perform a read from cache

has increased by 1 cycle. Thus every successful read takes a longer period of time - which

evidently has a much larger impact on performance than reducing cache misses.

0

200000

400000

600000

800000

1000000

16 32 64 128 256 512 1024 2048

o

f
m

is
se

s

block size (bytes)

Instruction Block Size Tradeoffs
 Miss rate vs Block Size

112000000

113000000

114000000

115000000

116000000

117000000

118000000

16 32 64 128 256 512 1024 2048

o

f
C

lo
ck

 T
ic

ks

Block Size(bytes)

Instruction Block Size Tradeoffs
Block Size vs Execution Time

Data Cache Block Size Tradeoffs
Question: Repeat part a), but now changing the block size of the L1 data cache. Plot the same

two graphs. Discuss your results, comparing to the results obtained in a).

Data Block Size Tradeoffs

Block Size # of Hits # of Misses Clock Ticks Access

Time(ns)

Hit latency

(cycles)

16 20009291 288258 115690561 .756 3

32 19841257 387301 116009735 .727 3

64 19603032 540267 116521899 .688 3

128 19369449 702012 116564691 .665 3

256 19017778 930365 120015775 .721 3

512 18553982 1201849 122445305 .923 4

1024 18090119 1516359 124673022 1.53 5

2048 15560865 2884645 127708197 1.54 6

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

16 32 64 128 256 512 1024 2048

o

f
m

is
se

s

block size (bytes)

Data Block Size Tradeoffs
Block Size vs Miss Rate

 As opposed to instruction memory which makes large use of spatial locality, data

memory needs to be more heavily dependent on temporal locality. Temporal locality is

maximized by having a larger number of addressable cache blocks. Consequently, as you

increase the block size (increases your use of spatial locality) you decrease the number of

addressable cache blocks (decreasing your use of temporal locality). This is why the graph

comparing miss rate to block size shows the miss rate increasing as the block size increases.

 The execution time graph shows that the increased number of misses causes the

execution time to increase. However, like before, the increased hit time has a larger effect on the

overall performance.

Associativity Tradeoffs
Question: Plot two graphs: L1 D-cache miss rate versus associativity, and total execution time

(clock cycles) versus cache associativity. Discuss your results.

Associativity Tradeoffs

Associativity # of Hits # of Misses Clock Ticks Access

Time(ns)

Hit latency

(cycles)

2 19841257 387301 116009735 .728 3

4 20091047 238549 115673322 .715 3

8 20217131 157793 115488889 .728 3

16 20266011 126633 115425190 .833 3

32 20304887 110920 117929968 1.15 4

64 20326646 107341 120689438 1.53 5

105000000

110000000

115000000

120000000

125000000

130000000

16 32 64 128 256 512 1024 2048

o

f
C

lo
ck

 T
ic

ks

Block Size(bytes)

Data Block Size Tradeoffs
Block Size vs Execution Time

 Sets increase the number of locations that any particular address can be stored at.

Consequently, as you increase the number of sets you will also decrease the miss rate - which

can be seen in the Associativity vs. Miss rate graph. That said, increasing the set associativity

will have diminishing returns as you approach full associativity because the number of

contending memory locations in any program is fixed. Thus increasing associativity beyond that

limit will have no effect.

 The execution time graph shows us that decreasing the miss rate will decrease the

execution time (as before) so long as the hit time does not increase. When the hit time increases

after 16 you see a sharp increase in execution time.

Cache Size Tradeoffs
Question: Plot two graphs: L1 I-cache miss rate versus

associativity, and total execution time (clock cycles) versus cache size. Discuss your results.

Cache Size Tradeoffs

0

100000

200000

300000

400000

500000

2 4 8 16 32 64

o

f
m

is
se

s

#of Sets

Associativity Tradeoffs
Associativity vs Miss Rate

112000000

114000000

116000000

118000000

120000000

122000000

2 4 8 16 32 64

o

f
C

lo
ck

 t
ic

ks

of Sets

Associativity Tradeoffs
Associativity vs Execution Time

Cache Size

(kByes)

of Hits # of Misses Clock Ticks Access

Time(ns)

Hit latency

(cycles)

32 19532470 747424 116009735 .727 3

64 20488381 167052 116485553 .813 3

128 20748775 10661 116743604 1.06 4

256 20753358 7792 116771227 1.18 4

512 20753476 7722 126034904 2.06 7

1024 20753482 7718 126044796 2.42 8

 Increasing the cache size will decrease the miss rate with diminishing returns. Larger

caches allow for more data to be stored in them, reducing the amount of replacement necessary.

However, once the cache size is larger than the program's total memory usage, increase in cache

0

100000

200000

300000

400000

500000

600000

700000

800000

32 64 128 256 512 1024

o

f
M

is
se

s

Cache size (kBytes)

Cache Size Tradeoffs
Cache Size vs Instruction Misses

110000000
112000000
114000000
116000000
118000000
120000000
122000000
124000000
126000000
128000000

32 64 128 256 512 1024

o

f
C

lo
ck

 T
ic

ks

Cache Size (kBytes)

Cache Size Tradeoffs
Cache Size vs Execution Time

will have no effect on performance. The cache size tradeoff shows this relation of diminishing

returns.

 The execution time graph shows that once the miss rate is not decreasing but the access

time is, the execution time jumps greatly - which makes sense since the access time almost

doubles at 512 however the miss rate does not fall at all.

Overall cache performance experiment
Options Instruction

Cache Block

Size (bytes)

Data Cache

Block Size

(bytes)

Data Cache

Associativity

Instruction cache

Size (kBytes)

1 256 16 16 64

2 256 16 16 32

3 256 32 16 64

Options # of Hits # of Misses Clock

Ticks

Instruction

Access

Time(ns)

Data Cache

Access

Time(ns)

Hit latency

for all

caches

(cycles)

1 20282617 102699 112554396 .749 .798 3

2 20297105 102678 113361659 .721 .798 3

3 20259332 126622 113582964 .749 .833 3

Option 1:

 Instruction Cache Block size: I chose 256 because it yielded the best performance when

tested alone.

 Data Cache Block Size: I chose 16 because it yielded the best performance when tested

alone.

 Associativity: I chose 16 because it yielded the best performance when tested alone.

 Instruction cache size: I ignored the best performance for this value, and instead chose

the value with the fewest number of misses but kept hit latency of 3.

Option 2

 Instruction Cache Size: I changed this value from 64 to 32 because the graph for

Instruction Cache Size shows that 32 has a slightly faster execution time.

Option 3

 Data Cache Block Size: I originally set this value at 128, but was forced to continuously

lower it because the hit latency was too high. The idea behind increasing this, was to see

if I a slight increase in spatial locality without affecting access time would increase

performance. As expected though, it did not.

Comments On Choices

 For each option, my highest priority was to keep the hit latency to 3 cycles. I did this

because the previous simulations had made it very clear that an increase in hit latency would

overpower any other advantage the system gained. For option 1, I chose what I felt to be the

surefire correct answer - which turned out to be correct. I considered options 2 and 3 to be long

shots, but they were still worth testing.

Best Option: Option 1

