
 vm.1

EEL-4713
Computer Architecture

Virtual Memory

 vm.2

Outline

°  Recap of Memory Hierarchy

°  Virtual Memory

°  Page Tables and TLB

°  Protection

 vm.3

Memory addressing - physical

°  So far we considered addresses of loads/stores go directly to caches/memory
•  As in your project

°  This makes life complicated if a computer is multi-processed/multi-user
•  How do you assign addresses within a program so that you know other

users/programs will not conflict with them?
Program A: Program B:

 store 0x100,1 store 0x100,5
 load R1,0x100

 vm.4

Virtual Memory?

Provides illusion of very large memory
 – sum of the memory of many jobs greater than physical memory
 – address space of each job larger than physical memory

Allows available (fast and expensive) physical memory to be
 efficiently utilized

Simplifies memory management and programming

Exploits memory hierarchy to keep average access time low.

Involves at least two storage levels: main and secondary

Main (DRAM): nanoseconds, M/GBytes
Secondary (HD): miliseconds, G/TBytes

Virtual Address -- address used by the programmer

Virtual Address Space -- collection of such addresses

Memory Address -- address of word in physical memory
 also known as “physical address” or “real address”

 vm.5

Memory addressing - virtual

Program A: Program B:
 store 0x100,1 store 0x100,5
 load R1,0x100

Translation A: Translation B:
 0x100 -> 0x40000100 0x100 -> 0x50000100

Use software and hardware to guarantee no conflicts
Operating system: keep software translation tables
Hardware: cache recent translations

 vm.6

Basic Issues in VM System Design
size of information blocks (pages) that are transferred from
 secondary (disk) to main storage (Mem)

Page brought into Mem, if Mem is full some page
 of Mem must be released to make room for the new page -->
 replacement policy

missing page fetched from secondary memory only on the occurrence
 of a page fault --> fetch/load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame

 vm.7

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n can be > m

MAP(a) = a' if data at virtual address a is present in physical
 address a' in M

 = 0 if data at virtual address a is not present in M need to

 allocate address in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

 vm.8

Paging Organization

frame 0
1

7

0
1024

7168

Phys Addr (PA)

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

Page size:
unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory
Address Mapping

VA page no. Page offset
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

(concatenation)

Virt. Addr (VA)

Page table stored in memory
One page table per process
Start of page table stored in

 page table base register
V – Is page in memory or on disk

 vm.9

Address Mapping Algorithm
If V = 1 (where is page currently stored?)
 then page is in main memory at frame address stored in table
 else page is located in secondary memory (location determined at
 process creation)

Access Rights
 R = Read-only, R/W = read/write, X = execute only

If kind of access not compatible with specified access rights,
 then protection_violation_fault

If valid bit not set then page fault

Terms:
Protection Fault: access rights violation; hardware raises exception,
 microcode, or software fault handler

Page Fault: page not resident in physical memory, also causes a trap;
 usually accompanied by a context switch: current process
 suspended while page is fetched from secondary storage; page faults
 usually handled in software by OS because page fault to
 secondary memory takes million+ cycles

 vm.10

*Hardware/software interface
°  What checks does the processor perform during a load/store memory

access?
•  Effective address computed in pipeline is virtual
•  Before accessing memory, must perform virtual-physical mapping

-  At hardware speed, critical to performance
•  If there is a valid mapping, load/store proceeds as usual; address

sent to cache, DRAM is the mapped address (physical addressed)
•  If there is no valid mapping, or if there is a protection violation,

processor does not know how to handle it
-  Throw an exception

–  Save the PC of the instruction that caused the exception so that
it can be retried later

–  Jump into an operating system exception handling routine
-  O/S handles exception using its specific policies (Linux,

Windows will behave differently)
-  Once it finishes handling, issue “return from interrupt”

instruction to recover PC and try instruction again

 vm.11

Virtual Address and a Cache

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the "innermost
 loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!
 synonym problem:
 1. two different virtual addresses map to same physical address

 => two different cache entries holding data for
 the same physical address! (data sharing between
 different processes)
 2. two same virtual addresses (from different processes) map to
 different physical addresses

 vm.12

TLBs
A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

TLB access time comparable to, though shorter than, cache access time
 (still much less than main memory access time)

 vm.13

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than hundreds of entries.
 This permits large/full associativity.

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 t t 1/2 t

Translation
with a TLB

 vm.14

Reducing Translation Time

Machines with TLBs can go one step further to reduce # cycles/cache
access

They overlap the cache access with the TLB access

Works because high order bits of the VA are used to look up in the TLB
 while low order bits are used as index into cache

 * Virtually indexed, physically tagged.

 vm.15

Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup 32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag != PA)] and TLB hit THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

 vm.16

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to
 index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
 n-way set associative caches if you want a large cache

 (e.g., cache size and page size need to match)

Example: suppose everything the same except that the cache is
 increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
 go to 8K byte page sizes
 go to 2 way set associative cache (would allow you to continue to
 use a 10 bit index)

1K
4 4

10
2 way set assoc cache

 vm.17

Hardware versus software TLB management

°  The TLB misses can be handled either by software or hardware
•  Software: processor has instructions to modify TLB in the

architecture; O/S handles replacement
•  E.g. MIPS
•  Hardware: processor handles replacement without need for

instructions to store TLB entries
•  E.g. x86

°  Instructions that cause TLB “flushes” are needed in hardware case too

 vm.18

Optimal Page Size
Choose page that minimizes fragmentation

large page size => internal fragmentation more severe (unused memory)
BUT increase in the # of pages / name space => larger page tables

In general, the trend is towards larger page sizes because

Most machines at 4K-64K byte pages today, with page sizes likely to
 increase

-- memories get larger as the price of RAM drops

-- the gap between processor speed and disk speed grows wider

Larger pages can exploit more spatial locality in transfers between
disk and memory

-- programmers desire larger virtual address spaces

 vm.19

2-level page table

.

.

.

Seg 0

Seg 1

Seg
255

4 bytes

256 P0

P255

4 bytes

1 K

.

.

.

PA

PA

D0

D1023

PA

PA .
.
.

Root Page Tables
Data Pages

4 K

Second Level Page Table

2 2 2 2 8 8 10 12 2 38
x x x =

Allocated in
User Virtual

Space

1 Mbyte, but allocated
in system virtual addr

space 256K bytes in
physical memory

 vm.20

Example: two-level address translation in x86

CR3 directory

table

10 10 12
VA

PA

 vm.21

Example: Linux VM

°  Demand-paging
•  Pages are brought into physical memory when referenced

°  Kernel keeps track of each process’ virtual address space using a
mm_struct data structure
•  Which contains pointers to list of “area” structures

(vm_area_struct)

 vm.22

vm_next!

vm_next!

Linux VM areas

task_struct!
mm_struct!

mm! mmap!

vm_area_struct!
vm_end!

vm_prot!
vm_start!

vm_end!

vm_prot!
vm_start!

vm_end!

vm_prot!

vm_next!

vm_start!

process virtual memory!

text!

data!

shared libraries!

•  Linked list of vm_area structures
associated with process

•  Start/end:
-  Bounds of each VM map

•  Prot:
-  Protection info (r/w)

 vm.23

VM “areas”

°  Linked vm_area_struct structures

°  A VM area: a part of the process virtual memory space that has a
special rule for the page-fault handlers (i.e. a shared library, the
executable area etc).

°  These are specified in a vm_area_struct
•  Start and end VM address of area
•  Protection information, flags

 vm.24

Linux fault handling

vm_area_struct!
vm_end!

r/o!

vm_next!

vm_start!

vm_end!

r/w/!

vm_next!

vm_start!

vm_end!

r/o!

vm_next!

vm_start!

process virtual memory!

VMA3!

VMA2!

VMA1!

0!

°  Exception triggers O/S handling if address
out of bounds or protection violated

°  Traverse vm_area list, check for bounds
•  If not mapped, it is a segmentation

violation – signal to process

°  If mapped, check protection of
vm_area_struct

•  E.g. r/o, r/w
•  Signal protection violation to process

if access not allowed
•  Otherwise, handle fault and bring

page to memory

 vm.25

Page Replacement Algorithms
Just like cache block replacement!

Least Recently Used:
-- selects the least recently used page for replacement

-- requires knowledge about past references, more difficult to implement

-- good performance, recognizes principle of locality

-- hard to keep track – update a structure on each memory reference?

 vm.26

Page Replacement (Continued)
Not Recently Used:
Associated with each page is a reference flag such that
 ref flag = 1 if the page has been referenced in recent past
 = 0 otherwise

-- if replacement is necessary, choose any page frame such that its
 reference bit is 0. This is a page that has not been referenced in the
 recent past

-- an implementation of NRU:

1 0
1 0
0
0

page table entry
page
table
entry

ref
bit

last replaced pointer (lrp)
if replacement is to take place,
advance lrp to next entry (mod
table size) until one with a 0 bit
is found; this is the target for
replacement; As a side effect,
all examined PTE's have their
reference bits set to zero.

1 0

An optimization is to search for the a page that is both
not recently referenced AND not dirty.

 vm.27

Demand Paging and Prefetching Pages
Fetch Policy
 when is the page brought into memory?
 if pages are loaded solely in response to page faults, then the
 policy is demand paging

An alternative is prefetching:
 anticipate future references and load such pages before their
 actual use

 + reduces page transfer overhead

 - removes pages already in page frames, which could adversely
 affect the page fault rate

 - predicting future references usually difficult

Most systems implement demand paging without prefetching

(One way to obtain effect of prefetching behavior is increasing the page size

 vm.28

Discussion – caches or no caches?

°  Caches help performance when there is locality but can be overhead if
locality is not high

•  Each hit/miss decision at each cache level requires a lookup
•  Some applications can run better with fewer cache levels

°  Example: “Cell” processor
•  No cache on attached processing units
•  There is a small memory array next to each unit, but it is handled by

software (not a cache controller)

 vm.29 vm.30

 vm.31

Summary

°  Virtual memory: a mechanism to provide much larger memory than
physically available memory in the system

°  Placement, replacement and other policies can have significant impact
on performance

°  Interaction of Virtual memory with physical memory hierarchy is
complex and addresses translation mechanisms must be designed
carefully for good performance.

