### **Divide: Paper & Pencil**

#### 1001 Quotient **Computer Architecture** Divisor 1000 1001010 Dividend ALU Design : Division and Floating Point <del>(1000</del>) 10 101 1010 -1000 10 Remainder (or Modulo result) See how big a number can be subtracted, creating quotient bit on each step Quotient bit = 1 if can be subtracted, 0 otherwise Dividend = Quotient x Divisor + Remainder 3 versions of divide, successive refinement EEL-4713 Ann Gordon-Ross.1 EEL-4713 Ann Gordon-Ross.2

### **Divide algorithm**

### ° Main ideas:

- · Expand both divisor and dividend to twice their size
  - Expanded divisor = divisor (half bits, MSB) zeroes (half bits, LSB)
  - Expanded dividend = zeroes (half bits, MSB) dividend (half bits, LSB)
- At each step, determine if divisor is smaller than dividend
  - Subtract the two, look at sign
  - If >=0: dividend/divisor>=1, mark this in quotient as "1"
  - If negative: divisor larger than dividend; mark this in quotient as "0"
- Shift divisor right and quotient left to cover next power of two
- Example: 7/2

### **DIVIDE HARDWARE Version 1**

 <sup>°</sup> 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg, 32-bit Quotient reg





### Divide Algorithm Version 1: 7 (0111) / 2 (0010) = 3 (0011) R 1 (0001)

| Step    | Remainder | Quotient | Divisor   | Rem-Div       |
|---------|-----------|----------|-----------|---------------|
| Initial | 0000 0111 | 0000     | 0010 0000 | < 0           |
| 1       | 0000 0111 | 0000     | 0001 0000 | < 0           |
| 2       | 0000 0111 | 0000     | 0000 1000 | < 0           |
| 3       | 0000 0111 | 0000     | 0000 0100 | 0000 0011 > 0 |
| 4       | 0000 0011 | 0001     | 0000 0010 | 0000 0001 > 0 |
| 5       | 0000 0001 | 0011     | 0000 0001 |               |
| Final   | 1         | 3        |           |               |

EEL-4713 Ann Gordon-Ross.6

**Observations on Divide Version 1** 

- 1/2 bits in divisor always 0
   > 1/2 of 64-bit adder is wasted
   > 1/2 of divisor is wasted
- <sup>°</sup> Instead of shifting divisor to right, shift remainder to left?
- <sup>°</sup> 1st step will never produce a 1 in quotient bit (otherwise too big)
  => switch order to shift first and then subtract, can save 1 iteration

### Divide Algorithm Version 1: 7 (0111) / 2 (0010) = 3 (0011) R 1 (0001)

| Step    | Remainder | Quotient | Divisor   | Rem-Div       |
|---------|-----------|----------|-----------|---------------|
| Initial | 0000 0111 | 0000     | 0010 0000 | < 0           |
| 1       | 0000 0111 | 0000     | 0001 0000 | < 0           |
| 2       | 0000 0111 | 0000     | 0000 1000 | < 0           |
| 3       | 0000 0111 | 0000     | 0000 0100 | 0000 0011 > 0 |
| 4       | 0000 0011 | 0001     | 000 0010  | 0000 0001 > 0 |
| 5       | 0000 0001 | 0011     | 0000 0001 |               |
| Final   | 1         | 3        |           |               |

First Rem-Dev always < 0 Always 0

### DIVIDE HARDWARE Version 2

# <sup>°</sup> <u>32</u>-bit Divisor reg, <u>32</u>-bit ALU, 64-bit Remainder reg, <u>32</u>-bit Quotient reg





EEL-4713 Ann Gordon-Ross.9

### **Observations on Divide Version 2**

- ° Eliminate Quotient register by combining with Remainder as shifted left
  - · Start by shifting the Remainder left as before.
  - Thereafter loop contains only two steps because the shifting of the Remainder register shifts both the remainder in the left half and the quotient in the right half
  - The consequence of combining the two registers together and the new order of the operations in the loop is that the remainder will shifted left one time too many.
  - Thus the final correction step must shift back only the remainder in the left half of the register

### **DIVIDE HARDWARE Version 3**

 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg, (<u>0</u>-bit Quotient reg)





### Divide Algorithm Version 3: 7 (0111) / 2 (0010) = 3 (0011) R 1 (0001)

| Step    | Remainder | Divisor | Rem-Div       |
|---------|-----------|---------|---------------|
| Initial | 0000 0111 | 0010    | Always < 0    |
| Shift   | 0000 1110 | 0010    | < 0           |
| 1       | 0001 1100 | 0010    | < 0           |
| 2       | 0011 1000 | 0010    | 0011-0010 > 0 |
| 2       | 0001 1000 | 0010    |               |
| 3       | 0011 0001 | 0010    | 0011-0010 > 0 |
| 3       | 0001 0001 | 0010    |               |
| 4       | 0010 0011 | 0010    |               |
| Final   | R1 3      |         |               |

EEL-4713 Ann Gordon-Ross.14

**Observations on Divide Version 3** 

- <sup>°</sup> Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit register to shift left or shift right
- $^\circ\,$  Hi and Lo registers in MIPS combine to act as 64-bit register for multiply and divide
- <sup>o</sup> Signed Divides: Simplest is to remember signs, make positive, and complement quotient and remainder if necessary
  - Note: Dividend and Remainder must have same sign
  - Note: Quotient negated if Divisor sign & Dividend sign disagree e.g., -7 ÷ 2 = -3, remainder = -1

### **Floating-Point**

° What can be represented in N bits?

| ° Unsigned      | 0          | to | 2 N          |
|-----------------|------------|----|--------------|
| ° 2s Complement | N-1<br>- 2 | to | N-′<br>2 - 1 |

- Integer numbers useful in many cases; must also consider "real" numbers with fractions
  - E.g. 1/2 = 0.5
    very large
    - 9,349,398,989,000,000,000,000,000,000

### **Recall Scientific Notation**



### \*Review from Prerequisites: Floating-Point Arithmetic

Representation of floating point numbers in IEEE 754 standard:



 $2^{-126}$  (1.0) to  $2^{127}$  (2 -  $2^{23}$ )

which is approximately:

EEL-4713 Ann Gordon-Ros (Hateger comparison valid on IEEE FI.Pt. numbers of same sign!)

### Normalized notation using powers of two

<sup>°</sup> Base 10: single non-zero digit left of the decimal point.

- Base 2: normalized numbers can also be represented as:
   1.xxxxxx \* 2<sup>^</sup>(yyyy), where x and y are binary
- ° Example: -0.75
  - -75/100, or, -3/4
  - -3 in binary: -11.0
  - Divided by 4 -> binary point moves left two positions, -0.11
  - Normalized: -1.1 \* 2^(-1)

EEL-4713 Ann Gordon-Ross.18

Single- and double-precision

- ° Single-precision: 32 bits
  - (sign + 8 exponent + 23 fraction)
- ° Double-precision: 64 bits
  - (sign + 11 exponent + 52 fraction)
  - Increases reach of large/small numbers by 3 powers, but most noticeable improvement is in the number of bits used to represent fraction
- ° Example: -0.75
  - -1.1 \*2^(-1)
  - Sign bit: 1
  - Exponent: e-127=-1 so e=126 (01111110)
  - Mantissa: 1000...00 (Remember, for 1.x, the 1 is implicit so not in M)
  - Single-precision representation: 1011111101000...00

EEL-4713 Ann Gordon-Ross.20

### **Operations with floating-point numbers**

#### <sup>°</sup> Addition/subtraction:

- Need to have both operands with the same exponent
  - "small" ALU calculates exponent difference
  - Shift number with smaller exponent to the right
- Add/subtract the mantissas
- ° Multiplication/division
  - Add/subtract the exponents
  - Multiply/divide mantissas
- ° Normalize, round, (re-normalize)

#### EEL-4713 Ann Gordon-Ross.21

### Addition



Start



### Addition example

- ° 99.99 + 0.161
- Scientific notation, assume only 4 digits can be stored
   9.999E+1, 1.610E-1
- ° Must align exponents:
  - 1.610E-1 = 0.0161E+1
- ° Can only represent 4 digits: 0.016E+1
- ° Sum: 10.015E+1
- ° Not normalized; adjust to 1.0015E+2
- Can only represent 4 digits; must round (0 to 4 down, 5 to 9 up)
   1.002E+2
- It can happen that after rounding result is no longer normalized
  E.g. if the sum was 9.9999E+2, normalize again

EEL-4713 Ann Gordon-Ross.22



EEL-4713 Ann Gordon-Ross.24

### **Multiplication**

- ° Example: 1.110E10 \* 9.200E-5
- <sup>°</sup> Add exponents: 10 + (-5) = 5
  - Remember: in IEEE format, the number stored in the FP bits is "e", but the actual exponent is (e-127) (subtract the bias). To compute the exponent of the result, you have to add the "e" bits from both operands, and then subtract 127 to adjust
  - E.g. exponent +10 is stored as 137; -5 as 122
  - 137+122 = 259
  - 259-127 = 132, which represents exponent +5
- ° Multiply significands
  - 1.110\*9.200 = 10.212000
- ° Normalize: 1.0212E+6
  - Check exponent for overflow (too large positive exponent) and underflow (too large negative exponent)
- ° Round to 4 digits: 1.021E+6

#### EEL-4713 Ann Gordon-Ross.25



- result of operation *overflows*, i.e., is larger than the largest number that can be represented
- overflow (too large of an exponent) is not the same as divide by zero Both generate +/-Inf as result; but raise different exceptions



- It may make sense to do further computations with infinity e.g., X=Inf > Y may be a valid comparison
- Not a number, but not infinity (e.q. sqrt(-4)) invalid operation exception (unless operation is = or ≠)

NaN S 1...1 non-zero

HW decides what goes here

NaNs propagate: f(NaN) = NaN



## Guard, round and sticky bits

**Multiplication** 

- ° # of bits in floating-point fraction is fixed
  - During an operation, can keep additional bits around to improve precision in rounding operations
  - Guard and round bits are kept around during FP operation and used to decide direction to round
- Sticky bits: flag whether any bits that are not considered in an operation (they have been shifted right) are 1
- ° Can be used as another factor to determine the direction of rounding

EEL-4713 Ann Gordon-Ross.26

### Guard and round bits

- ° E.g. 2.56\*10^0 + 2.34\*10^2
- ° 3 significant decimal digits
- ° With guard and round digits:
  - 2.3400 +
  - 0.0256
  - -----
  - 2.3000
  - 0 to 49: round down, 50 to 99: round up -> 2.37
- ° Witouth guard and round digits:
  - 2.34 +
  - 0.02
  - -----
  - 2.36

EEL-4713 Ann Gordon-Ross.29

Floating-point in x86

- ° First introduced with 8087 FP co-processor
- ° Primarily a stack architecture:
  - · Loads push numbers into stack
  - · Operations find operands on two top slots of stack
  - Stores pop from stack
  - Similar to HP calculators 2+3 -> 23+
- Also supports one operand to come from either FP register below top of stack, or from memory
- ° 32-bit (single-precision) and 64-bit (double-precision) support

### **Floating-point in MIPS**

- ° Use different set of registers
  - 32 32-bit floating point registers, \$f0 \$f31
- ° Individual registers: single-precision
- Two registers can be combined for double-precision
   \$f0 (\$f0,\$f1), \$f2 (\$f2,\$f3)
- ° add, sub, mult, div
  - .s for single, .d for double precision
- ° Load and store memory word to 32-bit FP register
  - Lwcl, swcl (cl refers to co-processor 1 when separate FPU used in past)
- $^\circ\,$  Instructions to branch on floating point conditions (e.g. overflow), and to compare FP registers

EEL-4713 Ann Gordon-Ross.30

### Floating point in x86

- ° Data movement:
  - · Load, load constant, store
- ° Arithmetic operations:
  - Add, subtract, multiply, divide, square root
- ° Trigonometric/logarithmic operations
  - Sin, cos, log, exp
- ° Comparison and branch

### **SSE2** extensions

- ° Streaming SIMD extension 2
  - Introduced in 2001
  - · SIMD: single-instruction, multiple data
  - · Basic idea: operate in parallel on elements within a wide word
    - e.g. 128-bit word can be seen as 4 single-precision FP numbers, or 2 double-precision
- ° Eight 128-bit registers

EEL-4713 Ann Gordon-Ross.33

- 16 in the 64-bit AMD64/EM64T
- ° No stack any register can be referenced for FP operation

Differences between x86 FP approaches

- ° 8087-based:
  - Registers are 80-bit (more accuracy during operations); data is converted to/from 64-bit when moving to/from memory
  - Stack architecture
  - · Single operand per register
- ° SSE2:
  - Registers are 128-bit
  - Register-register architecture
  - Multiple operands per register
- <sup>o</sup> Differences in internal representation can cause differences in results for the same program
  - 80-bit representation used in operations
  - Truncated to 64-bit during transfers
  - · Differences can accumulate, effected by when loads/stores occur

EEL-4713 Ann Gordon-Ross.34

### Floating point operations

- Number of bits is limited and small errors in individual FP operations can compound over large iterations
  - Numerical methods that perform operations such as to minimize accumulation of errors are needed in various scientific applications
- ° Operations may not work as you would expect
  - E.g. floating-point add is not always associative
  - x + (y+z) = (x+y) +z ?
  - x = -1.5\*10^38, y=1.5\*10^38, z=1.0
  - (x+y) + z = (-1.5\*10^38 + 1.5\*10^38) + 1.0 = (0.0) + 1.0 = 1.0
  - x + (y+z) = -1.5\*10^38 + (1.5\*10^38 + 1.0) = -1.5\*10^38 + 1.5\*10^38 = 0.0

1.5\*10^38 is so much larger than 1, that sum is just 1.5\*10^38 due to rounding during the operation

### Summary

- <sup>°</sup> Bits have no inherent meaning: operations determine whether they are really ASCII characters, integers, floating point numbers
- ° Divide can use same hardware as multiply: Hi & Lo registers in MIPS
- <sup>°</sup> Floating point basically follows paper and pencil method of scientific notation using integer algorithms for multiply and divide of significands
- ° IEEE 754 requires good rounding; special values for NaN, Infinity