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Computer Architecture 
ALU Design : Division and Floating Point 
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Divide: Paper & Pencil 

       1001  Quotient 

Divisor 1000   1001010  Dividend 
  –1000 
      10 
      101 
      1010 
     –1000 
        10  Remainder (or Modulo result) 

 

See how big a number can be subtracted, creating quotient 
bit on each step 

Quotient bit = 1 if can be subtracted, 0 otherwise 

Dividend = Quotient x Divisor + Remainder 
 

3 versions of divide, successive refinement 
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Divide algorithm 

°  Main ideas: 
•  Expand both divisor and dividend to twice their size 

-  Expanded divisor = divisor (half bits, MSB) zeroes (half bits, 
LSB) 

-  Expanded dividend = zeroes (half bits, MSB) dividend (half 
bits, LSB) 

•  At each step, determine if divisor is smaller than dividend 
-  Subtract the two, look at sign 
-  If >=0: dividend/divisor>=1, mark this in quotient as “1” 
-  If negative: divisor larger than dividend; mark this in quotient 

as “0” 
•  Shift divisor right and quotient left to cover next power of two 
•  Example: 7/2 
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DIVIDE HARDWARE Version 1 

° 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,  
32-bit Quotient reg 

0s     Remainder  Divid. 

Quotient 

Divisor           0s 

64-bit ALU 

Shift Right 

Shift Left 

Write 
Control 

32 bits 

64 bits 

64 bits 
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2b. Restore the original value by adding the  
Divisor register to the Remainder register, & 
place the sum in the Remainder register. Also 
shift the Quotient register to the left, setting  
the new rightmost bit to 0. 

Divide Algorithm Version 1: 7/2 
° Takes n+1 steps for n-bit Quotient & Rem. 

Remainder         Quotient  Divisor 
0000 0111  0000  0010 0000  

Test  
Remainder 

Remainder < 0 Remainder >= 0 

1. Subtract the Divisor register from the  
Remainder register, and place the result  
in the Remainder register. 

2a. Shift the  
Quotient register  
to the left setting  
the new rightmost 
 bit to 1. 

3. Shift the Divisor register right1 bit. 

Done 

 Yes: n+1 repetitions (n = 4 here) 

Start: Place Dividend in Remainder 

n+1 
repetition? 

 No: < n+1 repetitions 
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Divide Algorithm Version 1:  
7 (0111) / 2 (0010) = 3 (0011) R 1 (0001) 

Step Remainder Quotient Divisor Rem-Div 
Initial 0000 0111 0000 0010 0000 < 0 

1 0000 0111 0000 0001 0000 < 0 
2 0000 0111 0000 0000 1000 < 0 
3 0000 0111 0000 0000 0100 0000 0011 > 0 
4 0000 0011 0001 0000 0010 0000 0001 > 0 
5 0000 0001 0011 0000 0001 

Final 1 3 
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Observations on Divide Version 1 

° 1/2 bits in divisor always 0 
=> 1/2 of 64-bit adder is wasted 
 => 1/2 of divisor is wasted 

°  Instead of shifting divisor to right,  
shift remainder to left? 

° 1st step will never produce a 1 in quotient bit  
(otherwise too big) 
 => switch order to shift first and then subtract,  
can save 1 iteration 
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Divide Algorithm Version 1:  
7 (0111) / 2 (0010) = 3 (0011) R 1 (0001) 

Step Remainder Quotient Divisor Rem-Div 
Initial 0000 0111 0000 0010 0000 < 0 

1 0000 0111 0000 0001 0000 < 0 
2 0000 0111 0000 0000 1000 < 0 
3 0000 0111 0000 0000 0100 0000 0011 > 0 
4 0000 0011 0001 0000 0010 0000 0001 > 0 
5 0000 0001 0011 0000 0001 

Final 1 3 

First Rem-Dev always < 0 
Always 0 
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DIVIDE HARDWARE Version 2 

° 32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,  
32-bit Quotient reg 

Remainder 

Quotient 

Divisor 

32-bit ALU 
Shift Left 

Write 
Control 

32 bits 

32 bits 

64 bits 

Shift Left 
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Divide Algorithm Version 2 
Remainder          Quotient   Divisor   
0000 0111  0000   0010   

3b. Restore the original value by adding the Divisor  
register to the left half of the Remainderregister,  
&place the sum in the left half of the Remainder  
register. Also shift the Quotient register to the left,  
setting the new least significant bit to 0. 

Test  
Remainder 

Remainder < 0 Remainder >= 0 

2. Subtract the Divisor register from the  
left half of the Remainder register, & place the  
result in the left half of the Remainder register. 

3a. Shift the  
Quotient register  
to the left setting  
the new rightmost 
 bit to 1. 

1. Shift the Remainder register left 1 bit. 

Done 

 Yes: n repetitions (n = 4 here) 

 nth 
repetition? 

 No: < n repetitions 

Start: Place Dividend in Remainder 
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Observations on Divide Version 2 

°  Eliminate Quotient register by combining with Remainder as shifted left 
•  Start by shifting the Remainder left as before.  
•  Thereafter loop contains only two steps because the shifting of the 

Remainder register shifts both the remainder in the left half and the 
quotient in the right half  

•  The consequence of combining the two registers together and the 
new order of the operations in the loop is that the remainder will 
shifted left one time too many. 

•   Thus the final correction step must shift back only the remainder in 
the left half of the register 
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DIVIDE HARDWARE Version 3 

° 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,  
(0-bit Quotient reg) 

Remainder (Quotient) 

Divisor 

32-bit ALU 

Write 
Control 

32 bits 

64 bits 

Shift Left “HI” “LO” 
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Divide Algorithm Version 3 

3b. Restore the original value by adding the Divisor  
register to the left half of the Remainder register,  
&place the sum in the left half of the Remainder  
register. Also shift the Remainder register to the  
left, setting the new least significant bit to 0. 

Test  
Remainder 

Remainder < 0 Remainder >= 0 

2. Subtract the Divisor register from the  
left half of the Remainder register, & place the  
result in the left half of the Remainder register. 

3a. Shift the  
Remainder register  
to the left setting  
the new rightmost 
 bit to 1. 

1. Shift the Remainder register left 1 bit. 

Done. Shift left half of Remainder right 1 bit. 
 Yes: n repetitions (n = 4 here) 

 nth 
repetition? 

 No: < n repetitions 

Start: Place Dividend in Remainder 
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Divide Algorithm Version 3:  
7 (0111) / 2 (0010) = 3 (0011) R 1 (0001) 

Step Remainder Divisor Rem-Div 
Initial 0000 0111 0010 Always < 0 

Shift 0000 1110 0010 < 0 
1 0001 1100 0010 < 0 
2 0011 1000 0010 0011-0010 > 0 
2 0001 1000 0010 
3 0011 0001 0010 0011-0010 > 0 

Final R1    3 

3 0001 0001 0010 
4 0010 0011 0010 
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Observations on Divide Version 3 

°  Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit 
register to shift left or shift right 

°  Hi and Lo registers in MIPS combine to act as 64-bit register for multiply 
and divide 

°  Signed Divides: Simplest is to remember signs, make positive, and 
complement quotient and remainder if necessary 

•  Note: Dividend and Remainder must have same sign 
 

•  Note: Quotient negated if Divisor sign & Dividend sign disagree 
e.g., –7 ÷ 2 = –3, remainder = –1 
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Floating-Point 
°  What can be represented in N bits? 

°  Unsigned   0  to  2 

°  2s Complement  - 2  to  2 - 1 

°  Integer numbers useful in many cases; must also consider “real” 
numbers with fractions 

•  E.g. 1/2 = 0.5 
•  very large  9,349,398,989,000,000,000,000,000,000 
•  very small  0.0000000000000000000000045691 

N 

N-1 N-1 
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Recall Scientific Notation 

6.02 x 10                               1.673 x 10 
23 -24 

exponent 

radix (base) Mantissa 

decimal point 

Sign, magnitude 

Sign, magnitude 

IEEE F.P.      ± 1.M x 2 e - 127 

°  Issues: 
•  Arithmetic (+, -, *, / ) 
•  Representation, normalized form (e.g., x.xxx * 10x) 
•  Range and Precision 
•  Rounding 
•  Exceptions (e.g., divide by zero, overflow, underflow) 
•  Errors 
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Normalized notation using powers of two 

°  Base 10: single non-zero digit left of the decimal point.  

°  Base 2: normalized numbers can also be represented as: 
•  1.xxxxxx * 2^(yyyy), where x and y are binary 

°  Example: -0.75 
•  -75/100, or, -3/4 
•  -3 in binary: -11.0 
•  Divided by 4 -> binary point moves left two positions, -0.11 
•  Normalized: -1.1 * 2^(-1) 
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*Review from Prerequisites: Floating-Point Arithmetic 
Representation of floating point numbers in IEEE 754 standard: 
 
      single precision 

1 8 23 
sign 

exponent: 
excess 127 
binary integer 

mantissa: 
sign + magnitude, normalized 
binary significand w/ hidden 
integer bit:  1.M 

actual exponent is 
e = E – 127 (bias) 

S E M 

N = (-1)   2           (1.M) 
S E-127 

0 < E < 255 (bias makes < > comparisons easy) 

 Unbiased   Biased 
+- 1.0000 ! 0000 x 2-126  => 1.0000 ! 0000 x 21  
+- 1.1111 ! 1111 x 2+127  => 1.1111 ! 1111 x 2254 

+- 1.0000 ! 0000 x 20  => 1.0000 ! 0000 x 2127 

Magnitude of numbers that can be represented is in the range: 

2 
-126 

(1.0) to 2 127 (2 - 2 23 ) 

which is approximately: 

1.8 x 10 -38 to 3.40 x 10  38 

(integer comparison valid on IEEE Fl.Pt. numbers of same sign!) EEL-4713 Ann Gordon-Ross.20 

Single- and double-precision 

°  Single-precision: 32 bits 
•  (sign + 8 exponent + 23 fraction) 

°  Double-precision: 64 bits 
•  (sign + 11 exponent + 52 fraction) 
•  Increases reach of large/small numbers by 3 powers, but most 

noticeable improvement is in the number of bits used to represent 
fraction 

°  Example: -0.75 
•  -1.1 *2^(-1) 
•  Sign bit: 1 
•  Exponent: e-127=-1 so e=126 (01111110) 
•  Mantissa: 1000!00 (Remember, for 1.x, the 1 is implicit so not in M) 
•  Single-precision representation: 1011111101000!00 



EEL-4713 Ann Gordon-Ross.21 

Operations with floating-point numbers 

°  Addition/subtraction: 
•  Need to have both operands with the same exponent 

-  “small” ALU calculates exponent difference 
-  Shift number with smaller exponent to the right 

•  Add/subtract the mantissas 

°  Multiplication/division 
•  Add/subtract the exponents 
•  Multiply/divide mantissas 

°  Normalize, round, (re-normalize) 
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Addition example 

°  99.99 + 0.161 

°  Scientific notation, assume only 4 digits can be stored 
•  9.999E+1, 1.610E-1 

°  Must align exponents: 
•  1.610E-1 = 0.0161E+1 

°  Can only represent 4 digits: 0.016E+1 

°  Sum: 10.015E+1 

°  Not normalized; adjust to 1.0015E+2 

°  Can only represent 4 digits; must round (0 to 4 down, 5 to 9 up) 
•  1.002E+2 

°  It can happen that after rounding result is no longer normalized 
•  E.g. if the sum was 9.9999E+2, normalize again 
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Addition 
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Addition 
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Multiplication 

°  Example: 1.110E10 * 9.200E-5 

°  Add exponents: 10 + (-5) = 5 
•  Remember: in IEEE format, the number stored in the FP bits is “e”, 

but the actual exponent is (e-127) (subtract the bias). To compute 
the exponent of the result, you have to add the “e” bits from both 
operands, and then subtract 127 to adjust 

•  E.g. exponent +10 is stored as 137; -5 as 122 
•  137+122 = 259 
•  259-127 = 132, which represents exponent +5  

°  Multiply significands 
•  1.110*9.200 = 10.212000 

°  Normalize: 1.0212E+6 
•  Check exponent for overflow (too large positive exponent) and 

underflow (too large negative exponent) 

°  Round to 4 digits: 1.021E+6 
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Multiplication 
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Infinity and NaNs 
result of operation overflows, i.e., is larger than the largest number that 
      can be represented 
 
overflow (too large of an exponent) is not the same as divide by zero 

 Both generate +/-Inf as result; but raise different exceptions 

+/- infinity S  1 . . . 1  0 . . . 0 

It may make sense to do further computations with infinity 
      e.g.,  X=Inf  >  Y may be a valid comparison 

Not a number, but not infinity (e.q. sqrt(-4)) 
      invalid operation exception (unless operation is = or =) 

NaN S  1 . . . 1  non-zero 

NaNs propagate: f(NaN) = NaN 
HW decides what goes here 
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Guard, round and sticky bits 

°  # of bits in floating-point fraction is fixed 
•  During an operation, can keep additional bits around to improve 

precision in rounding operations 
•  Guard and round bits are kept around during FP operation and 

used to decide direction to round 

°  Sticky bits: flag whether any bits that are not considered in an operation 
(they have been shifted right) are 1 

°  Can be used as another factor to determine the direction of rounding 
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Guard and round bits 

°  E.g. 2.56*10^0 + 2.34*10^2 

°  3 significant decimal digits 

°  With guard and round digits: 
•  2.3400   + 
•  0.0256 
•  --------- 
•  2.3656 
•  0 to 49: round down, 50 to 99: round up -> 2.37 

°  Witouth guard and round digits: 
•  2.34   + 
•  0.02 
•  ------ 
•  2.36 
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Floating-point in MIPS 

°  Use different set of registers 
•  32 32-bit floating point registers, $f0 - $f31 

°  Individual registers: single-precision 

°  Two registers can be combined for double-precision 
•  $f0 ($f0,$f1), $f2 ($f2,$f3) 

°  add, sub, mult, div 
•  .s for single, .d for double precision 

°  Load and store memory word to 32-bit FP register 
•  Lwcl, swcl (cl refers to co-processor 1 when separate FPU used in 

past) 

°  Instructions to branch on floating point conditions (e.g. overflow), and 
to compare FP registers 
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Floating-point in x86 

°  First introduced with 8087 FP co-processor 

°  Primarily a stack architecture: 
•  Loads push numbers into stack 
•  Operations find operands on two top slots of stack 
•  Stores pop from stack 
•  Similar to HP calculators 2+3 -> 23+ 

°  Also supports one operand to come from either FP register below top of 
stack, or from memory 

°  32-bit (single-precision) and 64-bit (double-precision) support 
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Floating point in x86 

°  Data movement: 
•  Load, load constant, store 

°  Arithmetic operations: 
•  Add, subtract, multiply, divide, square root 

°  Trigonometric/logarithmic operations 
•  Sin, cos, log, exp 

°  Comparison and branch 
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SSE2 extensions 

°  Streaming SIMD extension 2 
•  Introduced in 2001 
•  SIMD: single-instruction, multiple data 
•  Basic idea: operate in parallel on elements within a wide word 

-  e.g. 128-bit word can be seen as 4 single-precision FP 
numbers, or 2 double-precision 

°  Eight 128-bit registers 
•  16 in the 64-bit AMD64/EM64T 

°  No stack – any register can be referenced for FP operation 

EEL-4713 Ann Gordon-Ross.34 

Differences between x86 FP approaches 

°  8087-based: 
•  Registers are 80-bit (more accuracy during operations); data is 

converted to/from 64-bit when moving to/from memory 
•  Stack architecture 
•  Single operand per register 

°  SSE2: 
•  Registers are 128-bit 
•  Register-register architecture 
•  Multiple operands per register 

°  Differences in internal representation can cause differences in results 
for the same program 

•  80-bit representation used in operations 
•  Truncated to 64-bit during transfers 
•  Differences can accumulate, effected by when loads/stores occur 
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Floating point operations 

°  Number of bits is limited and small errors in individual FP operations 
can compound over large iterations 

•  Numerical methods that perform operations such as to minimize 
accumulation of errors are needed in various scientific applications 

°  Operations may not work as you would expect 
•  E.g. floating-point add is not always associative 
•  x + (y+z) = (x+y) +z ? 
•  x = -1.5*10^38, y=1.5*10^38, z=1.0 
•  (x+y) + z = (-1.5*10^38 + 1.5*10^38) + 1.0 = (0.0) + 1.0 = 1.0 
•  x + (y+z) = -1.5*10^38 + (1.5*10^38 + 1.0) = -1.5*10^38 + 1.5*10^38 = 

0.0 1.5*10^38 is so much 
larger than 1, that sum 
is just 1.5*10^38 due 
to rounding during the 
operation 
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Summary 

°  Bits have no inherent meaning: operations determine whether they are 
really ASCII characters, integers, floating point numbers 

°  Divide can use same hardware as multiply: Hi & Lo registers in MIPS 

°  Floating point basically follows paper and pencil method of scientific 
notation using integer algorithms for multiply and divide of significands 

°  IEEE 754 requires good rounding; special values for NaN, Infinity 


