
EEL-4713 Ann Gordon-Ross.1

Computer Architecture
ALU Design : Division and Floating Point

EEL-4713 Ann Gordon-Ross.2

Divide: Paper & Pencil

 1001 Quotient

Divisor 1000 1001010 Dividend
 –1000
 10
 101
 1010
 –1000
 10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient
bit on each step

Quotient bit = 1 if can be subtracted, 0 otherwise

Dividend = Quotient x Divisor + Remainder

3 versions of divide, successive refinement

EEL-4713 Ann Gordon-Ross.3

Divide algorithm

°  Main ideas:
•  Expand both divisor and dividend to twice their size

-  Expanded divisor = divisor (half bits, MSB) zeroes (half bits,
LSB)

-  Expanded dividend = zeroes (half bits, MSB) dividend (half
bits, LSB)

•  At each step, determine if divisor is smaller than dividend
-  Subtract the two, look at sign
-  If >=0: dividend/divisor>=1, mark this in quotient as “1”
-  If negative: divisor larger than dividend; mark this in quotient

as “0”
•  Shift divisor right and quotient left to cover next power of two
•  Example: 7/2

EEL-4713 Ann Gordon-Ross.4

DIVIDE HARDWARE Version 1

° 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

0s Remainder Divid.

Quotient

Divisor 0s

64-bit ALU

Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits

EEL-4713 Ann Gordon-Ross.5

2b. Restore the original value by adding the
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting
the new rightmost bit to 0.

Divide Algorithm Version 1: 7/2
° Takes n+1 steps for n-bit Quotient & Rem.

Remainder Quotient Divisor
0000 0111 0000 0010 0000

Test
Remainder

Remainder < 0 Remainder >= 0

1. Subtract the Divisor register from the
Remainder register, and place the result
in the Remainder register.

2a. Shift the
Quotient register
to the left setting
the new rightmost
 bit to 1.

3. Shift the Divisor register right1 bit.

Done

 Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

 No: < n+1 repetitions

EEL-4713 Ann Gordon-Ross.6

Divide Algorithm Version 1:
7 (0111) / 2 (0010) = 3 (0011) R 1 (0001)

Step Remainder Quotient Divisor Rem-Div
Initial 0000 0111 0000 0010 0000 < 0

1 0000 0111 0000 0001 0000 < 0
2 0000 0111 0000 0000 1000 < 0
3 0000 0111 0000 0000 0100 0000 0011 > 0
4 0000 0011 0001 0000 0010 0000 0001 > 0
5 0000 0001 0011 0000 0001

Final 1 3

EEL-4713 Ann Gordon-Ross.7

Observations on Divide Version 1

° 1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
 => 1/2 of divisor is wasted

°  Instead of shifting divisor to right,
shift remainder to left?

° 1st step will never produce a 1 in quotient bit
(otherwise too big)
 => switch order to shift first and then subtract,
can save 1 iteration

EEL-4713 Ann Gordon-Ross.8

Divide Algorithm Version 1:
7 (0111) / 2 (0010) = 3 (0011) R 1 (0001)

Step Remainder Quotient Divisor Rem-Div
Initial 0000 0111 0000 0010 0000 < 0

1 0000 0111 0000 0001 0000 < 0
2 0000 0111 0000 0000 1000 < 0
3 0000 0111 0000 0000 0100 0000 0011 > 0
4 0000 0011 0001 0000 0010 0000 0001 > 0
5 0000 0001 0011 0000 0001

Final 1 3

First Rem-Dev always < 0
Always 0

EEL-4713 Ann Gordon-Ross.9

DIVIDE HARDWARE Version 2

° 32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

32-bit ALU
Shift Left

Write
Control

32 bits

32 bits

64 bits

Shift Left

EEL-4713 Ann Gordon-Ross.10

Divide Algorithm Version 2
Remainder Quotient Divisor
0000 0111 0000 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainderregister,
&place the sum in the left half of the Remainder
register. Also shift the Quotient register to the left,
setting the new least significant bit to 0.

Test
Remainder

Remainder < 0 Remainder >= 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Quotient register
to the left setting
the new rightmost
 bit to 1.

1. Shift the Remainder register left 1 bit.

Done

 Yes: n repetitions (n = 4 here)

 nth
repetition?

 No: < n repetitions

Start: Place Dividend in Remainder

EEL-4713 Ann Gordon-Ross.11

Observations on Divide Version 2

°  Eliminate Quotient register by combining with Remainder as shifted left
•  Start by shifting the Remainder left as before.
•  Thereafter loop contains only two steps because the shifting of the

Remainder register shifts both the remainder in the left half and the
quotient in the right half

•  The consequence of combining the two registers together and the
new order of the operations in the loop is that the remainder will
shifted left one time too many.

•  Thus the final correction step must shift back only the remainder in
the left half of the register

EEL-4713 Ann Gordon-Ross.12

DIVIDE HARDWARE Version 3

° 32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,
(0-bit Quotient reg)

Remainder (Quotient)

Divisor

32-bit ALU

Write
Control

32 bits

64 bits

Shift Left “HI” “LO”

EEL-4713 Ann Gordon-Ross.13

Divide Algorithm Version 3

3b. Restore the original value by adding the Divisor
register to the left half of the Remainder register,
&place the sum in the left half of the Remainder
register. Also shift the Remainder register to the
left, setting the new least significant bit to 0.

Test
Remainder

Remainder < 0 Remainder >= 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Remainder register
to the left setting
the new rightmost
 bit to 1.

1. Shift the Remainder register left 1 bit.

Done. Shift left half of Remainder right 1 bit.
 Yes: n repetitions (n = 4 here)

 nth
repetition?

 No: < n repetitions

Start: Place Dividend in Remainder

EEL-4713 Ann Gordon-Ross.14

Divide Algorithm Version 3:
7 (0111) / 2 (0010) = 3 (0011) R 1 (0001)

Step Remainder Divisor Rem-Div
Initial 0000 0111 0010 Always < 0

Shift 0000 1110 0010 < 0
1 0001 1100 0010 < 0
2 0011 1000 0010 0011-0010 > 0
2 0001 1000 0010
3 0011 0001 0010 0011-0010 > 0

Final R1 3

3 0001 0001 0010
4 0010 0011 0010

EEL-4713 Ann Gordon-Ross.15

Observations on Divide Version 3

°  Same Hardware as Multiply: just need ALU to add or subtract, and 64-bit
register to shift left or shift right

°  Hi and Lo registers in MIPS combine to act as 64-bit register for multiply
and divide

°  Signed Divides: Simplest is to remember signs, make positive, and
complement quotient and remainder if necessary

•  Note: Dividend and Remainder must have same sign

•  Note: Quotient negated if Divisor sign & Dividend sign disagree
e.g., –7 ÷ 2 = –3, remainder = –1

EEL-4713 Ann Gordon-Ross.16

Floating-Point
°  What can be represented in N bits?

°  Unsigned 0 to 2

°  2s Complement - 2 to 2 - 1

°  Integer numbers useful in many cases; must also consider “real”
numbers with fractions

•  E.g. 1/2 = 0.5
•  very large 9,349,398,989,000,000,000,000,000,000
•  very small 0.0000000000000000000000045691

N

N-1 N-1

EEL-4713 Ann Gordon-Ross.17

Recall Scientific Notation

6.02 x 10 1.673 x 10
23 -24

exponent

radix (base) Mantissa

decimal point

Sign, magnitude

Sign, magnitude

IEEE F.P. ± 1.M x 2 e - 127

°  Issues:
•  Arithmetic (+, -, *, /)
•  Representation, normalized form (e.g., x.xxx * 10x)
•  Range and Precision
•  Rounding
•  Exceptions (e.g., divide by zero, overflow, underflow)
•  Errors

EEL-4713 Ann Gordon-Ross.18

Normalized notation using powers of two

°  Base 10: single non-zero digit left of the decimal point.

°  Base 2: normalized numbers can also be represented as:
•  1.xxxxxx * 2^(yyyy), where x and y are binary

°  Example: -0.75
•  -75/100, or, -3/4
•  -3 in binary: -11.0
•  Divided by 4 -> binary point moves left two positions, -0.11
•  Normalized: -1.1 * 2^(-1)

EEL-4713 Ann Gordon-Ross.19

*Review from Prerequisites: Floating-Point Arithmetic
Representation of floating point numbers in IEEE 754 standard:

 single precision

1 8 23
sign

exponent:
excess 127
binary integer

mantissa:
sign + magnitude, normalized
binary significand w/ hidden
integer bit: 1.M

actual exponent is
e = E – 127 (bias)

S E M

N = (-1) 2 (1.M)
S E-127

0 < E < 255 (bias makes < > comparisons easy)

 Unbiased Biased
+- 1.0000 ! 0000 x 2-126 => 1.0000 ! 0000 x 21
+- 1.1111 ! 1111 x 2+127 => 1.1111 ! 1111 x 2254

+- 1.0000 ! 0000 x 20 => 1.0000 ! 0000 x 2127

Magnitude of numbers that can be represented is in the range:

2
-126

(1.0) to 2 127 (2 - 2 23)

which is approximately:

1.8 x 10 -38 to 3.40 x 10 38

(integer comparison valid on IEEE Fl.Pt. numbers of same sign!) EEL-4713 Ann Gordon-Ross.20

Single- and double-precision

°  Single-precision: 32 bits
•  (sign + 8 exponent + 23 fraction)

°  Double-precision: 64 bits
•  (sign + 11 exponent + 52 fraction)
•  Increases reach of large/small numbers by 3 powers, but most

noticeable improvement is in the number of bits used to represent
fraction

°  Example: -0.75
•  -1.1 *2^(-1)
•  Sign bit: 1
•  Exponent: e-127=-1 so e=126 (01111110)
•  Mantissa: 1000!00 (Remember, for 1.x, the 1 is implicit so not in M)
•  Single-precision representation: 1011111101000!00

EEL-4713 Ann Gordon-Ross.21

Operations with floating-point numbers

°  Addition/subtraction:
•  Need to have both operands with the same exponent

-  “small” ALU calculates exponent difference
-  Shift number with smaller exponent to the right

•  Add/subtract the mantissas

°  Multiplication/division
•  Add/subtract the exponents
•  Multiply/divide mantissas

°  Normalize, round, (re-normalize)

EEL-4713 Ann Gordon-Ross.22

Addition example

°  99.99 + 0.161

°  Scientific notation, assume only 4 digits can be stored
•  9.999E+1, 1.610E-1

°  Must align exponents:
•  1.610E-1 = 0.0161E+1

°  Can only represent 4 digits: 0.016E+1

°  Sum: 10.015E+1

°  Not normalized; adjust to 1.0015E+2

°  Can only represent 4 digits; must round (0 to 4 down, 5 to 9 up)
•  1.002E+2

°  It can happen that after rounding result is no longer normalized
•  E.g. if the sum was 9.9999E+2, normalize again

EEL-4713 Ann Gordon-Ross.23

Addition

EEL-4713 Ann Gordon-Ross.24

Addition

EEL-4713 Ann Gordon-Ross.25

Multiplication

°  Example: 1.110E10 * 9.200E-5

°  Add exponents: 10 + (-5) = 5
•  Remember: in IEEE format, the number stored in the FP bits is “e”,

but the actual exponent is (e-127) (subtract the bias). To compute
the exponent of the result, you have to add the “e” bits from both
operands, and then subtract 127 to adjust

•  E.g. exponent +10 is stored as 137; -5 as 122
•  137+122 = 259
•  259-127 = 132, which represents exponent +5

°  Multiply significands
•  1.110*9.200 = 10.212000

°  Normalize: 1.0212E+6
•  Check exponent for overflow (too large positive exponent) and

underflow (too large negative exponent)

°  Round to 4 digits: 1.021E+6
EEL-4713 Ann Gordon-Ross.26

Multiplication

EEL-4713 Ann Gordon-Ross.27

Infinity and NaNs
result of operation overflows, i.e., is larger than the largest number that
 can be represented

overflow (too large of an exponent) is not the same as divide by zero

 Both generate +/-Inf as result; but raise different exceptions

+/- infinity S 1 . . . 1 0 . . . 0

It may make sense to do further computations with infinity
 e.g., X=Inf > Y may be a valid comparison

Not a number, but not infinity (e.q. sqrt(-4))
 invalid operation exception (unless operation is = or =)

NaN S 1 . . . 1 non-zero

NaNs propagate: f(NaN) = NaN
HW decides what goes here

EEL-4713 Ann Gordon-Ross.28

Guard, round and sticky bits

°  # of bits in floating-point fraction is fixed
•  During an operation, can keep additional bits around to improve

precision in rounding operations
•  Guard and round bits are kept around during FP operation and

used to decide direction to round

°  Sticky bits: flag whether any bits that are not considered in an operation
(they have been shifted right) are 1

°  Can be used as another factor to determine the direction of rounding

EEL-4713 Ann Gordon-Ross.29

Guard and round bits

°  E.g. 2.56*10^0 + 2.34*10^2

°  3 significant decimal digits

°  With guard and round digits:
•  2.3400 +
•  0.0256
•  ---------
•  2.3656
•  0 to 49: round down, 50 to 99: round up -> 2.37

°  Witouth guard and round digits:
•  2.34 +
•  0.02
•  ------
•  2.36

EEL-4713 Ann Gordon-Ross.30

Floating-point in MIPS

°  Use different set of registers
•  32 32-bit floating point registers, $f0 - $f31

°  Individual registers: single-precision

°  Two registers can be combined for double-precision
•  $f0 ($f0,$f1), $f2 ($f2,$f3)

°  add, sub, mult, div
•  .s for single, .d for double precision

°  Load and store memory word to 32-bit FP register
•  Lwcl, swcl (cl refers to co-processor 1 when separate FPU used in

past)

°  Instructions to branch on floating point conditions (e.g. overflow), and
to compare FP registers

EEL-4713 Ann Gordon-Ross.31

Floating-point in x86

°  First introduced with 8087 FP co-processor

°  Primarily a stack architecture:
•  Loads push numbers into stack
•  Operations find operands on two top slots of stack
•  Stores pop from stack
•  Similar to HP calculators 2+3 -> 23+

°  Also supports one operand to come from either FP register below top of
stack, or from memory

°  32-bit (single-precision) and 64-bit (double-precision) support

EEL-4713 Ann Gordon-Ross.32

Floating point in x86

°  Data movement:
•  Load, load constant, store

°  Arithmetic operations:
•  Add, subtract, multiply, divide, square root

°  Trigonometric/logarithmic operations
•  Sin, cos, log, exp

°  Comparison and branch

EEL-4713 Ann Gordon-Ross.33

SSE2 extensions

°  Streaming SIMD extension 2
•  Introduced in 2001
•  SIMD: single-instruction, multiple data
•  Basic idea: operate in parallel on elements within a wide word

-  e.g. 128-bit word can be seen as 4 single-precision FP
numbers, or 2 double-precision

°  Eight 128-bit registers
•  16 in the 64-bit AMD64/EM64T

°  No stack – any register can be referenced for FP operation

EEL-4713 Ann Gordon-Ross.34

Differences between x86 FP approaches

°  8087-based:
•  Registers are 80-bit (more accuracy during operations); data is

converted to/from 64-bit when moving to/from memory
•  Stack architecture
•  Single operand per register

°  SSE2:
•  Registers are 128-bit
•  Register-register architecture
•  Multiple operands per register

°  Differences in internal representation can cause differences in results
for the same program

•  80-bit representation used in operations
•  Truncated to 64-bit during transfers
•  Differences can accumulate, effected by when loads/stores occur

EEL-4713 Ann Gordon-Ross.35

Floating point operations

°  Number of bits is limited and small errors in individual FP operations
can compound over large iterations

•  Numerical methods that perform operations such as to minimize
accumulation of errors are needed in various scientific applications

°  Operations may not work as you would expect
•  E.g. floating-point add is not always associative
•  x + (y+z) = (x+y) +z ?
•  x = -1.5*10^38, y=1.5*10^38, z=1.0
•  (x+y) + z = (-1.5*10^38 + 1.5*10^38) + 1.0 = (0.0) + 1.0 = 1.0
•  x + (y+z) = -1.5*10^38 + (1.5*10^38 + 1.0) = -1.5*10^38 + 1.5*10^38 =

0.0 1.5*10^38 is so much
larger than 1, that sum
is just 1.5*10^38 due
to rounding during the
operation

EEL-4713 Ann Gordon-Ross.36

Summary

°  Bits have no inherent meaning: operations determine whether they are
really ASCII characters, integers, floating point numbers

°  Divide can use same hardware as multiply: Hi & Lo registers in MIPS

°  Floating point basically follows paper and pencil method of scientific
notation using integer algorithms for multiply and divide of significands

°  IEEE 754 requires good rounding; special values for NaN, Infinity

