
EEL-4713 Ann Gordon-Ross .1 

EEL-4713 
Computer Architecture 

Performance 
 

EEL-4713.2 

Overview of Today’s Lecture: Performance 

°  Definition and Measures of Performance 

°  Summarizing Performance and Performance Pitfalls 

°  Reading: Chapter 1 

EEL-4713.3 

Technology and Cost Summary 

°  Integrated circuits driving computer industry 

°  Technology improvements: 
•  CMOS transistors getting smaller, faster for each new generation 
•  Smaller -> more transistors per area -> more functionality (e.g. 64-

bit datapath, MMX extensions, superscalar execution, caches, 
multiple cores) 

•  Faster -> higher raw speed (clock cycle) 

°  Die costs goes up with the cube of die area 

EEL-4713.4 

Review: Summary from Chapter 1 

°  All computers consist of five components 
•  Processor: (1) datapath and (2) control 
•  (3) Memory 
•  (4) Input devices and (5) Output devices 

°  Not all “memory” are created equally 
•  Cache: fast (expensive) memory are placed closer to the processor, 

limited amount due to large area 
•  Main memory: less expensive memory--we can have more 

°  Input and output (I/O) devices are very diverse 
•  Wide range of speed: graphics vs. keyboard 
•  Wide range of requirements: speed, standard, cost ... etc. 



EEL-4713.5 

Performance 
°  Purchasing perspective  

•  given a collection of machines, which has the  
-  best performance ? 
-  least cost ? 
-  best performance / cost ? 

°  Design perspective 
•  faced with design options, which has the  

-  best performance improvement ? 
-  least cost ? 
-  best performance / cost ? 

°  Both require 
•  basis for comparison 
•  metric for evaluation 

°  Our goal is to understand cost & performance implications of 
architectural choices EEL-4713.6 

Two notions of “performance” 

° Time to do the task  (Execution Time) 
 – execution time, response time, latency 

° Tasks per day, hour, week, sec, ns. .. (Performance) 
 – throughput, bandwidth 

 Response time and throughput often are in opposition 
 

Plane 

Boeing 747 

BAD/Sud 
Concorde 

Speed 

610 mph 

1350 mph 

DC to Paris 

6.5 hours 

3 hours 

Passengers 

470 

132 

Throughput 
(pmph) 

286,700 

178,200 

Which has higher performance? 

EEL-4713.7 

Example 

 
•  Time of Concorde vs. Boeing 747? 

•  Concord is 1350 mph / 610 mph = 2.2 times faster 
                                                        = 6.5 hours / 3 hours 

 
•  Throughput of Concorde vs. Boeing 747 ? 

•  Concord is 178,200 pmph / 286,700 pmph = 0.62 “times 
faster” 

•  Boeing  is 286,700 pmph / 178,200 pmph = 1.6   “times faster” 
 

•  Boeing is 1.6 times (“60%”) faster in terms of throughput 
•  Concord is 2.2 times (“120%”) faster in terms of flying time 
 
We will focus primarily on execution time for a single job 
 

EEL-4713.8 

Definitions 

°  Performance is in units of things-per-second 
•  bigger is better 

°  If we are primarily concerned with response time 
•  performance(x) =           1                                     

  execution_time(x) 
 

" X is n times faster than Y"  means 
  Performance(X)        ExecutionTime(Y)   

 n         =  ----------------------  =    ------------------------- 
  Performance(Y)        ExecutionTime(X) 



EEL-4713.9 

Basis of Evaluation 

Actual Target Workload 

Full Application Benchmarks 

Small “Kernel”  
Benchmarks 

Microbenchmarks 

Pros Cons 

•  representative 
•  very specific 
•  non-portable 
•  difficult to run, or 
 measure 
•  hard to identify cause 

•  portable 
•  widely used 
•  improvements 
useful in reality 

•  easy to run, early in 
design cycle 

•  identify peak 
capability and 
potential bottlenecks 

• less representative 
 than target workload 

•  easy to “fool” 

•  “peak” may be a long 
way from application 
performance 

EEL-4713.10 

Metrics of performance 

Compiler 

Programming  
Language 

Application 

Datapath 
Control 

Transistors Wires Pins 

ISA 

Function Units 

(millions) of Instructions per second – MIPS 
(millions) of (F.P.) operations per second – MFLOP/s 

Cycles per second (clock rate) 

Megabytes per second 

Answers per month 
Operations per second 

EEL-4713.11 

Relating Processor Metrics 

°  CPU execution time = CPU clock cycles/program * clock cycle time 
•  Or, CPU execution time = CPU clock cycles/program ÷ clock rate 

°  CPU clock cycles/program = Instructions/program * avg. clock cycles 
per instruction 

•  Or, more commonly: CPI (clock cycles per instruction) = (CPU clock 
cycles/program) ÷ (Instructions/program)  

°  Examples: 
•  Single-cycle MIPS datapath: CPI=1 (all instructions take 1 cycle) 
•  Multi-cycle MIPS datapath: CPI within 2-5 range 

EEL-4713.12 

Organizational Trade-offs 

Compiler 

Programming  
Language 

Application 

Datapath 
Control 

Transistors Wires Pins 

ISA 

Function Units 

Instruction Mix 

Cycle Time 

CPI 



EEL-4713.13 

CPI 

CPI  =   ! CPI    *    F          where   F    =                  I      
i  = 1 

n 

i i i i 

Instruction Count 

 
 
 

CPI varies depending on individual instruction 
 e.g. 5-cycle load, 3-cycle ALU in multi-cycle MIPS 

Average CPI for a program depends on the “mix” of instructions 
it executes 

 e.g. close to 5 if load-intensive, close to 4 if ALU intensive 

The instruction mix in % 

n classes/types of instructions 

EEL-4713.14 

Example (RISC processor) 

Typical Mix 

Base Machine 
Op  Freq  Cycles  F*CPI(i)  % Time 
ALU  50%  1     .5  23% 
Load  20%  5   1.0  45% 
Store  10%  3     .3  14% 
Branch  20%  2     .4  18% 
    2.2 

How much faster would the machine be if a better data cache 
reduced the average load time to 2 cycles? 
 
How does this compare with using branch prediction to shave a  
cycle off the branch time? 
 
What if two ALU instructions could be executed at once? 

Invest resources where time is spent! 

EEL-4713.15 

Aspects of CPU Performance 

CPU time  =  Seconds  = Instructions  x  Cycles       x   Seconds 
      Program      Program          Instruction       Cycle 

  instr. count  CPI  clock rate 
Program 
 
Compiler 
 
Instr. Set. Arch. 
 
Organization 
 
Technology 

IC CPI CLK 

EEL-4713.16 

Aspects of CPU Performance 

CPU time  =  Seconds  = Instructions  x  Cycles       x   Seconds 
      Program      Program          Instruction       Cycle 

  instr. count  CPI  clock rate 
Program            X     (x) avg 
 
Compiler            X     (x) avg 
 
Instr. Set. Arch.            X      X                         X 
 
Organization       X     X 
 
Technology        X 

IC CPI CLK 



EEL-4713.17 

Marketing Metrics 

MIPS  = Instruction Count / Time * 10^6 

= Clock Rate / CPI * 10^6 

• machines with different instruction sets ? 

• programs with different instruction mixes ? 

•  dynamic frequency of instructions 

•  uncorrelated with performance 

 

MFLOP/S = FP Operations / Time * 10^6 

• machine dependent 

• Not necessarily where time is spent 

 

EEL-4713.18 

Why benchmarks? 

°  How we evaluate differences 
•  Different systems 
•  Changes to a single system 

°  Provide a target 
•  Benchmarks should represent large class of important 

programs 
•  Improving benchmark performance should help many 

programs 

°  For better or worse, benchmarks shape a field 

°  Good ones accelerate progress 
•  good target for development 

°  Bad benchmarks hurt progress 
•  New ideas that help real programs v. sell machines/

papers? 

EEL-4713.19 

Programs to Evaluate Processor Performance 

°  (Toy) Benchmarks 
•  10-100 line 
•  e.g.,: sieve, puzzle, quicksort, “cast” 

°  Synthetic Benchmarks 
•  attempt to match average frequencies of real workloads 
•  e.g., Whetstone, dhrystone 

°  Kernels 
•  Time critical excerpts 

EEL-4713.20 

Successful Benchmark: SPEC 

°  1987: RISC industry mired in “bench marketing” 
•  Inconistent 
•  Not reported fairly or correctly 
•  Everyone had a “new and better” benchmark targeted to make 

their architecture look better 

°  EE Times + 5 companies band together to perform Systems 
Performance Evaluation Committee (SPEC) in 1988:  
Sun, MIPS, HP, Apollo, DEC 

°  Create standard list of programs, inputs, reporting: some real 
programs, includes OS calls, some I/O 

 



EEL-4713.21 

SPEC first round 
°  First round 1989; 10 programs, single number to summarize 

performance  

°  One program: 99% of time in single line of code 

°  New front-end compiler could improve dramatically 

Benchmark

SP
EC

 P
er

f

0

100

200

300

400

500

600

700

800

gc
c

ep
re

ss
o

sp
ic

e

do
du

c

na
sa

7 li

eq
nt

ot
t

m
at

rix
30

0

fp
pp

p

to
m

ca
tv

Comparing different platform performance 

EEL-4713.22 

SPEC Evolution 

°  Second round; SpecInt92 (6 integer programs) and SpecFP92 (14 
floating point programs) 

°  Third round; 1995; new set of programs 

°  Currently: SPEC 2006 

°  Additions: 
•  SPECweb (Web server throughput) 
•  JVM (Java virtual machine) 
•  SPEChpc (high-performance computing) 
•  SFS (file system) 
•  SPECviewperf, SPECapc (graphics) 

http://www.spec.org 

EEL-4713.23 

Quantitative design principles 

°  Primary goal: cost-performance 
•  Increase performance with small cost implications 

°  Key principle to keep in mind: 
•  “Make the common case fast” 
•  Quantified by “Amdahl’s Law” 

EEL-4713.24 

Amdahl’s Law 

°  Idea: 
•  Given a system “X” and the opportunity of enhancing it to become 

a new system “Y” 
•  How faster will “Y” be relative to “X”? 

°  Key parameters: 
•  The gain from the enhancement 
•  The frequency at which it can be applied 



EEL-4713.25 

Example - Triathlon 

°  Three parts: run, swim, cycle 

°  Bob has been training for a competition 
•  Based on his experience, he knows that during competition he can 

push his limit to: 
-  Run 30% faster than in training, or 
-  Swim 50% faster, or 
-  Cycle 20% faster 

°  Where should Bob spend his energy during competition? 

°  By the way, when training Bob spends: 
•  60 minutes running 
•  40 minutes swimming 
•  2 hours cycling 

EEL-4713.26 

Amdahl’s Law 

°  Used to compute speedups: 

                  Performance_with_enhancement 
Speedup = -------------------------------------------- 
                 Performance_without_enhancement 
 

°  Performance: 
•  Inversely proportional to execution time 
•  Speedup = EXECold/EXECnew 

EEL-4713.27 

Amdahl’s Law (cont) 

EXECnew = EXECold * 

          [ (1 – FRACenh) + FRACenh/SPenh] 

 

EXECnew,old: 
execution times (seconds) 

FRACenh: 
Fraction of time enhancement is applied (%) 

SPenh: 
Speedup due to enhancement (absolute number) 

EEL-4713.28 

Example 

°  Bob’s speedup due to swimming: 
•  FRACenh = 40 min/220 min = 0.182 
•  SPenh = 1.50 (50% speedup) 
•  Speedup = EXECold/EXECnew =  

    = 1/[(1-0.182)+0.182/1.50] 
    = 1.065   (6.5% improvement) 

°  Running: 1.067 (6.7% improvement) 

°  Cycling: 1.100 (10% improvement) 



EEL-4713.29 

Other important design principles 

°  Locality 
•  Programs tend to reuse code/data recently accessed 

-  Memory hierarchies leverage this locality for increased 
performance 

-  Combats the memory wall 

°  Parallelism 
•  Multiple operations in a single clock cycle 

-  Pipelining, super-scalar execution, multi-core designs, vector 
processors 

EEL-4713.30 

Fallacies & Pitfalls 

°  Relative perf. can be judged by clock rates 
•  Fail to capture IC, CPI components 
•  Cannot use clock rate to judge, even if same program, same ISA 

-  IC same, but CPI may not be 
e.g: Pentium 4 1.7GHz relative to P-III 1GHz 

EEL-4713.31 

Summary 

°  Time is the measure of computer performance! 

°  Remember Amdahl’s Law: Speedup is limited by unimproved part of 
program 

CPU time  =  Seconds  = Instructions  x  Cycles       x   Seconds 
      Program      Program          Instruction       Cycle 


