Midterm 1 Study Guide

- Program performance
 o What aspects affect it and how
- Stored program concept, how was this revolutionary?
- Basic stored program execution flow (lec2, slide 6)
- RISC vs. CISC
 o Basic organization, how are the different?
 o Advantages and disadvantages
 o Where can operands come from? How is this advantageous for building RISC pipelines?
- MIPS
 o Registers
 - How many, how big, why are some special?
 o Instruction formats
 - What are they
 - Why only three
 - Advantages of fixed formatting/size
 - Why aren’t all fields used? Advantages/disadvantages
 - Implications/side effects of changing a field size (e.g., changing the number of registers to 6 but leaving the instruction length fixed at 23-bits)
 o Assembly code
 - Write some assembly for basic C++ code: loops, if/else
 o Support for procedure/function calls
 - How are arguments and return values handled
 - Temporary vs saved registers
 - Caller vs. callee saved registers
 - Return address?
 - Stack frame, what is in it and why is it useful
 - Frame pointer vs. stack pointer
 o Purpose of load linked and store conditional
 o Arithmetic vs. logical operations
 o Architectural structure
 - Advantages/disadvantages for speculative operations (e.g., fetching registers while the instruction is being decoded)
 o Instruction phases:
 - Instruction fetch, register fetch/instruction decode, execution/address calculation, memory access, register write back (e.g., Lec 6, slide 8)
 - What happens in each phase for each instruction type? High-level operation details based on the instruction being executed. I would not ask you to define signal values for datapath components
- Structural designs
 o Fast and big vs. small and slow
 - Implications
 - Advantages/disadvantages
 - Ex. Ripple carry vs. carry look ahead adders
 - How can this concept be applied to other structures
 o Single cycle (one long cycle) vs multi-cycle (multiple shorter cycles) designs for the same overall operation
 - Advantages/disadvantages
 - Multi-cycle vs. multiple-cycle delay path
 - Understand implications on the critical path for single vs. multi-cycle operation.
 - How does the clock cycle change? How does overall execution time of 1 instruction change? (not pipelined yet)
 - Maintaining timing constraints: different between single cycle violations and multi-cycle violations
• Timing diagrams
 o Draw them and/or understand them (e.g., Lec 4, slide 21; Lec 6, slide 9 (but I would never ask you to draw something this complex, just understand what is going on here))
• Processor design (note: simple designs for a small set of instructions)
 o Define datapath components based on a set of instructions
 o Design an ALU based on a set of operations
 o Define a controller and datapath based on a set of instructions
 o Question 1 on the sample midterm is VERY IMPORTANT!
• Multipliers/Dividers
 o Iterative improvement purposes (what was being reduced)
 • Reasons why registers could be removed/combined, ALUs could be reduced
 o Know the basic progression of each version, but no details. I would remind you in the question of any details you needed to know
 o Work through an example for multiple/divide version 3
 • Show register values for each iteration
 o Booth’s algorithm for multiply
 • What is the purpose of this algorithm
 • Basic idea of how it works
 • Do not need to work through an example
• Floating point
 o Convert a decimal number to binary single-precision floating point notation
 o Bias—what is it? What does it facilitate?
 o Single-precision vs. double-precision
 • Ranges
 • Register layout
 o Exceptions
 • Underflow, overflow
 • Infinity, NaN
 o Decimal representation operations
 • Work through addition/subtract multiple/divide with and without round and guard bits
 o Purpose of special bits
 • Round, guard, sticky
 o Why aren’t some FP operations associative? Give example
 o Challenges wrt to FP operations (e.g., precision, accumulated errors)
• Performance
 o Calculate CPI based on instruction mix
 o Calculate CPI-speedup based on architectural changes
 o Compare CPIs of processors based on instruction mixes
 o Chart on slide 16