
1

ARM Low-power Processors

and Architectures

Dan Millett
Verification Enablement

Processor Division

2

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

3

ARM Ltd

 Founded in November 1990

 Spun out of Acorn Computers

 Initial funding from Apple, Acorn and VLSI

 Designs the ARM range of RISC processor cores

 Licenses ARM core designs to semiconductor
partners who fabricate and sell to their
customers

 ARM does not fabricate silicon itself

 Also develop technologies to assist with the design-
in of the ARM architecture

 Software tools, boards, debug hardware

 Application software

 Bus architectures

 Peripherals, etc

4

ARM’s Activities

memory

SoC

Processors

System Level IP:

Data Engines

Fabric

3D Graphics

Physical IP

Software IP

Development Tools

Connected Community

5

ARM Connected Community – 700+

5

6

Huge Range of Applications

Energy Efficient Appliances

IR Fire

Detector

Intelligent

Vending

Tele-parking

Utility

Meters

Exercise

Machines Intelligent toys

Equipment Adopting 32-bit ARM

Microcontrollers

7

Ultra Low Cost
Mobile phones

~100%
market share

How many ARM’s Do You Have?

Ultra Low Cost
Mobile Computers

5x 100%
market share

 Smartphones

3x 100%
market share

Ultra Low Cost
Digital TVs

35%
market share

Ultra Low Cost
Disk Drives

~75%
market share

Ultra Low Cost
PC Peripherals

40%
market share

Ultra Low Cost
Microcontrollers

35%
market share

Ultra Low Cost
Cars

5x 50%
market share

http://images.google.com/imgres?imgurl=http://www.bpesolutions.com/pgimages/robotarm2.jpg&imgrefurl=http://www.bpesolutions.com/photo7.html&h=394&w=558&sz=27&tbnid=G8euluzq9JeuLM:&tbnh=92&tbnw=131&hl=en&start=1&prev=/images?q=robot+arm&svnum=10&hl=en&lr=

8

Huge Opportunity For ARM Technology

1998 2011 2020

billion
25+

cores to date

100+
billion cores accumulated

after next 9 yrs

9

World’s Smallest ARM Computer?

A C B

Wirelessly networked into large scale

sensor arrays

Battery Solar Cells

Processor, SRAM and PMU

University of Michigan

Sensors, timers

Cortex-M0 +16KB RAM 65nm

UWB Radio antenna

10 kB Storage memory

~3fW/bit

12µAh Li-ion Battery

Wireless Sensor Network

Cortex-M0; 65¢

10

World’s Largest ARM Computer?

4200 ARM powered

Neutrino Detectors

Work supported by the National Science Foundation and University of Wisconsin-Madison

70 bore holes 2.5km deep

60 detectors per string

starting 1.5km down

1km3 of active telescope

11

From 1mm3 to 1km3

1mm3 1km3

10¢ $1000

 Mobile

 Embedded Consumer

 Mobile Computing Server

Enterprise PC

Home

HPC

12

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

13

ARM Cortex Advanced Processors

ARM Cortex-A family:

 Applications processors

 Targeted for OS’s, graphics, demanding tasks

ARM Cortex-R family:

 Embedded processors

 Real-time signal processing, control applications

ARM Cortex-M family:

 Microcontroller-oriented processors

 MCU, ASSP, and SoC applications

12k gates...

Cortex-M4

SC300

Cortex-M3

Cortex-M1

Cortex-M0

SC000

...2.5GHz

Cortex-A5
x1-4

Cortex-A8

Cortex-A9
x1-4

Cortex-A15
x1-4

Cortex-R5
1-2

Cortex-R4

1-2

Cortex-R7

14

Relative Performance*

*Represents attainable speeds in 130, 90, 65, or 45nm processes

Cortex-
M0

Cortex-
M3

ARM7 ARM926 ARM1026 ARM1136 ARM1176 Cortex-A8
Cortex-A9
Dual-core

Max Freq (MHz) 50 150 184 470 540 610 750 1100 2000

Min Power (mW/MHz) 0.012 0.06 0.35 0.235 0.36 0.335 0.568 0.43 0.5

0

500

1000

1500

2000

2500

M
a
x
 F

re
q

u
e
n

c
y
 (

M
h

z
)

15

Cortex family

Cortex-A8

 Architecture v7A

 MMU

 AXI

 VFP & NEON support

Cortex-R4

 Architecture v7R

 MPU (optional)

 AXI

 Dual Issue

Cortex-M3

 Architecture v7M

 MPU (optional)

 AHB Lite & APB

16

Data Sizes and Instruction Sets

 The ARM is a 32-bit architecture.

 When used in relation to the ARM:

 Byte means 8 bits

 Halfword means 16 bits (two bytes)

 Word means 32 bits (four bytes)

 Most ARM’s implement two instruction sets

 32-bit ARM Instruction Set

 16-bit Thumb Instruction Set

 Jazelle cores can also execute Java bytecode

17

ARM and Thumb Performance

Memory width (zero wait state)

0

5000

10000

15000

20000

25000

30000

32-bit 16-bit 16-bit with

32-bit stack

ARM

Thumb

Dhrystone 2.1/sec

@ 20MHz

18

The Thumb-2 instruction set

 Variable-length instructions

 ARM instructions are a fixed length of 32 bits

 Thumb instructions are a fixed length of 16

bits

 Thumb-2 instructions can be either 16-bit or

32-bit

 Thumb-2 gives approximately 26%

improvement in code density over ARM

 Thumb-2 gives approximately 25%

improvement in performance over

Thumb

19

Processor Modes

 The ARM has seven basic operating modes:

 User : unprivileged mode under which most tasks run

 FIQ : entered when a high priority (fast) interrupt is raised

 IRQ : entered when a low priority (normal) interrupt is raised

 Supervisor : entered on reset and when a Software Interrupt

 instruction is executed

 Abort : used to handle memory access violations

 Undef : used to handle undefined instructions

 System : privileged mode using the same registers as user mode

20

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ Mode IRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

The ARM Register Set

21

Program Status Registers

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Architecture 5TE/J only

 Indicates if saturation has occurred

 J bit

 Architecture 5TEJ only

 J = 1: Processor in Jazelle state

 Interrupt Disable bits.

 I = 1: Disables the IRQ.

 F = 1: Disables the FIQ.

 T Bit

 Architecture xT only

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 Mode bits

 Specify the processor mode

27 31

N Z C V Q

28 6 7

I F T mode

16 23

8 15

5 4 0 24

f s x c

 U n d e f i n e d J

22

 ARM instructions can be made to execute conditionally by postfixing them with the

appropriate condition code field.

 This improves code density and performance by reducing the number of

forward branch instructions.

 CMP r3,#0 CMP r3,#0

 BEQ skip ADDNE r0,r1,r2

 ADD r0,r1,r2

skip

 By default, data processing instructions do not affect the condition code flags but

the flags can be optionally set by using “S”. CMP does not need “S”.

 loop

 …

 SUBS r1,r1,#1

 BNE loop

 if Z flag clear then branch

 decrement r1 and set flags

Conditional Execution and Flags

23

Load/Store

Miscellaneous

Classes of Instructions

Data Operations

MOV PC, Rm

Bcc

BL

BLX

Change of Flow

24

 Branch : B{<cond>} label

 Branch with Link : BL{<cond>} subroutine_label

 The processor core shifts the offset field left by 2 positions, sign-extends it

and adds it to the PC

 ± 32 Mbyte range

 How to perform longer branches?

28 31 24 0

 Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

23 25 27

Branch instructions

25

Data processing Instructions

 Consist of :

 Arithmetic: ADD ADC SUB SBC RSB RSC

 Logical: AND ORR EOR BIC

 Comparisons: CMP CMN TST TEQ

 Data movement: MOV MVN

 These instructions only work on registers, NOT memory.

 Syntax:

 <Operation>{<cond>}{S} Rd, Rn, Operand2

 Comparisons set flags only - they do not specify Rd

 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.

26

Register, optionally with shift operation

 Shift value can be either be:

 5 bit unsigned integer

 Specified in bottom byte of

another register.

 Used for multiplication by constant

Immediate value

 8 bit number, with a range of 0-255.

 Rotated right through even

number of positions

 Allows increased range of 32-bit

constants to be loaded directly into

registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Using a Barrel Shifter:The 2nd Operand

27

Data Processing Instruction Examples

 MOV r3, r0 ; copies r0 into r3

 MVN r6, r8 ; copies the complement of r8 into r6

 ADD r0, r1, r2 ; r0 = r1 + r2

 ADC r0, r1, r2 ; r0 = r1 + r2 + <carry flag>

 SUB r3, r1, r7 ; r3 = r1 – r7

 RSB r3, r1, r7 ; r3 = r7 – r1

 SBC r3, r1, r7 ; r3 = r1 – (r7 + <carry flag>)

 AND r0, r1, #0xA5 ; r0 = r1 & 0xA5

 BIC r0, r1, #0xA5 ; r0 = r1 with bits 0,2,5,and 7 cleared

 ORR r0, r1, #0xA5 ; r0 = r1 with bits 0,2,5,and 7 set

 CMP r5, r9 ; same as SUBS, but only affects APSR

 CMN r0, r1 ; same as ADDS, but only affects APSR

 TST r0, r1 ; same as ANDS, but only affects APSR

 TEQ r0, r1 ; same as EORS, but only affects APSR

28

 Use to move data between one or two registers and memory

 LDRD STRD Doubleword

 LDR STR Word

 LDRB STRB Byte

 LDRH STRH Halfword

 LDRSB Signed byte load

 LDRSH Signed halfword load

 Syntax

 LDR{<size>}{<cond>} Rd, <address>

 STR{<size>}{<cond>} Rd, <address>

Single / Double Register Data Transfer

Any remaining space
zero filled or sign extended

Memory

 Rd

31 0

29

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

30

Multiplier

The ARM7TDM Core

Instruction

Decoder

Address
Incrementer

nRESET

nMREQ
SEQ

ABORT

nIRQ
nFIQ

nRW
MAS[1:0]

LOCK

nCPI
CPA
CPB

nWAIT
MCLK

nOPC

BIGEND

ISYNC

nTRANS

nM[4:0]

D[31:0]

Barrel
Shifter

32 Bit ALU

DBE

Write Data
Register

Read Data

Register

Address Register

Register Bank

A[31:0] ABE

and

Control

Logic

PC Update

Decode Stage

Instruction
Decompression

Incrementer

P

C

A

B

u

s

B

B

u

s

A

L

U

B

u

s

31

Cortex-M3 Datapath

Register

Bank Mul/Div

Address

Incrementer

ALU

B

A

INTADDR

I_HADDR

Address

Register

Barrel

Shifter

Writeback

ALU

Read Data

Register

Write Data

Register

Instruction

Decode

I_HRDATA

D_HWDATA

D_HRDATA

Address

Incrementer

D_HADDR
Address

Register

32

Pipeline changes for ARM9TDMI

Instruction
Fetch

 Shift + ALU Memory
Access

Reg
Write Reg

Read
Reg

Decode

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

ARM or Thumb
Inst Decode

Reg Select

Reg
Read

Shift ALU
Reg

Write
ThumbARM
decompress

ARM decode
Instruction

Fetch

FETCH DECODE EXECUTE

ARM7TDMI

33

 Cortex-M3 has 3-stage fetch-decode-execute pipeline

 Similar to ARM7

 Cortex-M3 does more in each stage to increase overall

performance

Cortex-M3 Pipeline

Branch forwarding & speculation

1st Stage - Fetch 2nd Stage - Decode 3rd Stage - Execute

Execute stage branch (ALU branch & Load Store Branch)

Fetch

(Prefetch)

AGU

Instruction

Decode &

Register Read

Branch

Address

Phase & Write

Back

Data Phase

Load/Store &

Branch

Multiply & Divide

Shift ALU & Branch

Write

34

ARM10 vs. ARM11 Pipelines

ARM11

Fetch

1

Fetch

2
Decode Issue

Shift ALU Saturate

Write

back

MAC

1

MAC

2

MAC

3

Address

Data

Cache

1

Data

Cache

2

Shift + ALU
Memory

Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg Read

Multiply

Branch

Prediction

Instruction

Fetch

ISSUE

ARM or

Thumb

Instruction

Decode Multiply
Add

ARM10

35

Full Cortex-A8 Pipeline Diagram

13-Stage Integer Pipeline 10-Stage NEON Pipeline

NEON

Load queue

NEON

Instruction

Decode

Instruction Execute and Load/Store

E1 E3 E4 M1E2 M2 M3 N1 N6N2 N3 N4 N5E5

LS pipe 0 or 1

 Instruction

Fetch

F1 F2F0 D1 D2 D3 D4

Instruction Decode

L3 memory system

BIU pipeline

L2 Data ArrayL2 Tag Array

L1 L2 L3 L4 L5 L6 L8

L1 data cache miss

L1 instruction cache miss

Branch mispredict penalty

NEON store data

Integer register writeback

NEON register writebackReplay penalty

A
rc

h
ite

c
tu

ra
l re

g
is

te
r file

D0 E0

L7
Embedded Trace Macrocell

T10T3T0 T4 T5 T6 T7 T8 T9T2T1 T11

M0

T13T12

MUL pipe 0

ALU pipe 0

ALU pipe 1

Integer ALU pipe

Integer MUL pipe

Integer shift pipe

Non-IEEE FP ADD pipe

Non-IEEE FP MUL pipe

IEEE FP engine

LS permute pipe

N
E

O
N

 re
g

is
te

r file

L2 data

External trace port

L1 data

36

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

37

TI OMAP35X SoC

38

Agenda

 Introduction to ARM Ltd

 ARM Architecture/Programmers Model

 Data Path and Pipelines

 System Design

 Development Tools

39

Development Platforms

40

Keil Development Tools for ARM

 Includes ARM macro assembler, compilers (ARM RealView C/C++

Compiler, Keil CARM Compiler, or GNU compiler), ARM linker, Keil uVision

Debugger and Keil uVision IDE

 Keil uVision Debugger accurately simulates on-chip peripherals (I2C, CAN,

UART, SPI, Interrupts, I/O Ports, A/D and D/A converters, PWM, etc.)

 Evaluation Limitations

 16K byte object code + 16K data limitation

 Some linker restrictions such as base addresses for code/constants

 GNU tools provided are not restricted in any way

 http://www.keil.com/demo/

41

Keil Development Tools for ARM

42

University Resources

www.arm.com/university/

University@arm.com

http://www.arm.com/university/

43

Your Future at ARM…

 Graduate and Internship/Co-op Opportunities

 Engineering: Memory, Validation, Performance, DFT, R&D, GPU and more!

 Sales and Marketing: Corporate and Technical

 Corporate: IT, Patents, Services (Training and Support), and Human

Resources

 Incredible Culture and Comprehensive Benefit Package

 Competitive Reward

 Work/Life Balance

 Personal Development

 Brilliant Minds and Innovative Solutions

 Keep in Touch!

 www.arm.com/about/careers

https://twitter.com/
http://www.linkedin.com/profile/view?id=6622629&trk=tab_pro

44

TI Panda Board

OMAP4430 Processor

 1 GHz Dual-core ARM

Cortex-A9 (NEON+VFP)

 C64x+ DSP

 PowerVR SGX 3D GPU

 1080p Video Support

POP Memory

 1 GB LPDDR2 RAM

USB Powered
 < 4W max consumption

(OMAP small % of that)

 Many adapter options

(Car, wall, battery, solar, ..)

45

Fin

46

Nokia N95 Multimedia Computer

Symbian OS™ v9.2
Operating System supporting ARM

processor-based mobile devices,

developed using ARM® RealView®

Compilation Tools

OMAP™ 2420

Applications Processor
ARM1136™ processor-based

SoC, developed using Magma ®

Blast® family and winner of

2005 INSIGHT Award for ‘Most

Innovative SoC’

Connect. Collaborate. Create.

Mobiclip™ Video Codec
Software video codec for ARM

processor-based mobile devices

ST WLAN Solution
Ultra-low power 802.11b/g WLAN

chip with ARM9™ processor-based

MAC

S60™ 3rd Edition

S60 Platform supporting ARM

processor-based mobile devices

47

Beagle Board

48

$149

> 1000 participants
and growing

Open access to
hardware

documentation

Wikis, blogs,
promotion of
community

activity

Free
software

Freedom to
innovate

Personally
affordable

Active &
technical

community

Opportunity
to tinker and

learn

Instant access to
>10 million lines

of code

Addressing
open source
community

needs

Targeting community development

49

OMAP3530 Processor

 600MHz Cortex-A8

 NEON+VFPv3

 16KB/16KB L1$

 256KB L2$

 430MHz C64x+ DSP

 32K/32K L1$

 48K L1D

 32K L2

 PowerVR SGX GPU

 64K on-chip RAM

POP Memory

 128MB LPDDR RAM

 256MB NAND flash USB Powered

 2W maximum consumption

 OMAP is small % of that

 Many adapter options

 Car, wall, battery, solar, …

Peripheral I/O

 DVI-D video out

 SD/MMC+

 S-Video out

 USB 2.0 HS OTG

 I2C, I2S, SPI,

MMC/SD

 JTAG

 Stereo in/out

 Alternate power

 RS-232 serial

3”

Fast, low power, flexible expansion

50

Peripheral I/O

 DVI-D video out

 SD/MMC+

 S-Video out

 USB HS OTG

 I2C, I2S, SPI,

MMC/SD

 JTAG

 Stereo in/out

 Alternate power

 RS-232 serial

3”

Other Features

 4 LEDs

 USR0

 USR1

 PMU_STAT

 PWR

 2 buttons

 USER

 RESET

 4 boot sources

 SD/MMC

 NAND flash

 USB

 Serial

On-going collaboration at BeagleBoard.org

 Live chat via IRC for 24/7 community support

 Links to software projects to download

And more…

http://beagleboard.org/

51

Project Ideas Using Beagle

 OS Projects

 OS porting to ARM/Cortex (TI OMAP)

 MythTV system

 “Super-Beagle” – stack of Beagles as compute engine and task

distribution

 Linux applications

 NEON Optimization Projects

 Codec optimization in ffmpeg (pick your favorite codec)

 Voice and image recognition

 Open-source Flash player optimizations (swfdec)

