The Cortex-A15 Verification Story

University of Florida

Dan Millett

October 2012

The Architecture for the

the Digital Wo

ARM Introduction

- IP licensing company
 - R&D outsourcing, supplying all major semiconductor companies
 - Processor "brain" in the chip
- Started in 1990
 - Based in Cambridge, UK
 - Listed on London and NASDAQ
 - \$8 Bn market cap (4x in two years)
- Now 1900 people
 - Mainly R&D engineers
- \$600m revenue, 40% operating profit
- Partnership business model
 - ~6 Bn shipments in 2010

ARM started in a barn

Now 30 offices in 15 countries

How many ARM's Do You Have?

Huge Opportunity For ARM Technology

ARM's Opportunity at all Price Points

AR

ARM Connected Community – 700+

Silicon Partners

Design Support Partners

MXIC anoradio

ARM Austin

- Austin site opened in 1999
- Currently 250 engrs
- Growing 10%+ per year
- Top right of CPU roadmap
- Interconnect fabric
- Verification tools
- R&D
- Sales, AEs, Support...

The Architecture for the Digital World®

ARM

Austin is the center of the CPU world

CPU Teams

1

ARM High end of Mobile Qualcomm DSPs

Atom

Servers

Servers

- 2. Qualcomm
- 3. Intel
- 4. Freescale
- 5. IBM
- 6. Oracle
- 7. Centaur
- 8. Broadcom
- 9. AMD
- 10. Samsung
- 11. Apple

Networking processors Multiple CPUS ARM CPUs

Low cost X86

PowerPC and more

shh... it's Apple

SoC teams

- 1. Calxeda ARM servers
- 2. Nvidia
- 3. TI
- 4. Cirrus
- 5. Plus another 5-10

WHAT IS CORTEX-A15?

Cortex-A15: Next Generation Leadership

Target Markets

- High-end wireless and smartphone platforms
- tablet, large-screen mobile and beyond
- Consumer electronics and auto-infotainment
- Hand-held and console gaming
- Networking, server, enterprise applications

Cortex-A class multi-processor

- 40bit physical addressing (1TB)
- Full hardware virtualization
- AMBA 4 system coherency
- ECC and parity protection for all SRAMs

Advanced power management

- Fine-grain pipeline shutdown
- Aggressive L2 power reduction capability
- Fast state save and restore

Significant performance advancement

Improved single-thread and MP performance

Targets 1.5 GHz in 32/28 nm LP process Targets 2.5 GHz in 32/28 nm G/HP process

Cortex-A15 MPCore Block Diagram

Cortex-A15 Pipeline Overview

15-Stage Integer Pipeline

- 4 extra cycles for multiply, load/store
- 2-10 extra cycles for complex media instructions

Configuration Challenge

System feature	Cortex-A15
Number of CPUs	1-4
L1 cache size	Fixed at 32 KB
L2 cache controller	Included
L2 cache size	512KB, 1MB, 2MB, 4 MB
L2 tag RAM register slice	0, 1
L2 data RAM register slice	0, 1, 2
L2 arbitration register slice	0, 1
Error protection	None, L2 cache only, L1 and L2 cache
Interrupt controller	Optional
Number of SPIs	0-224 in steps of 32
Power management	Optional clamp/power-gate control pins
Floating point / NEON	None, VFP Only, VFP and NEON
Trace	PTM (integrated, required)

Cortex-A15 System Scalability

- Processor-to-processor coherency and I/O coherency
- Memory and synchronization barriers
- Virtualization support with distributed virtual memory signaling

VERIFICATION METHODOLOGIES

ARM CPU Verification Strategies

- Design practices "correct by construction"
- Test planning
- Multiple and varied verification methods emphasizing:
 - Unit level
 - Top level RIS (random instruction sequences)
 - System level stress testing
- Coverage
- Soaking / Bug Hunting

Bug Discovery Timeline - Theoretical

Where are bugs discovered?

Where Are Bugs Found - Actual

The Architecture for the Digital World®

ARM

Cortex-A15 Unit Level Testbenches

Unit Level Simulation

- Simulation is the corner-stone verification method
- Coverage driven, constrained random SystemVerilog
 - Assertions for interfaces, white box internals
 - Higher level checkers
 - Code and functional coverage drives stimulus completeness
- Well-defined and testplan-linked functional coverage
- Multi-unit testbenches are used where appropriate
- Simulator performance and compute cluster
- Debug visualization and automation

Top Level Testbench

Top Level Simulation

- Uses a CPU Top-Level Testbench
 - Simple memory, simple trickbox, Arch reference model integration
- Tests are binary executable programs
- Exercise various Cortex-A15 configurations
- Directed tests
 - AVS is architecture compliance suite every ARM CPU must pass
 - DVS is a suite of directed tests for this ARM implementation
- Random tests (RIS = Random Instruction Sequences)
 - ISA
 - MP/coherency
- Irritators: interrupts, ECC, page tables, "chicken bits"

RIS (Random Instruction Sequences)

- Track record of hitting un-planned scenarios
- Multiple RIS engines have been developed over >12 years and applied to all CPUs
 - 3 mainstream ISA based engines
 - 3 MP targeted engines
 - Plus 5 additional engines to target load/stores, VFP, M and R class cores
- Engines being enhanced to scale in H/W platforms
 - To achieve much higher throughputs (>10¹⁵ cycles)

RIS Generator Testing Space

The Architecture for the Digital World®

ARM

System Level Validation

- Objective to perform "in-system" validation of ARM IP
 - Extended validation of IP in system context
 - Find IP product bugs from real-world testing
- Platforms
 - Emulation
 - SystemBench = configurable platform for running SV tests
 - FPGA
 - High throughput to enable deep soaking of the design
- Test Content
 - Bare-metal
 - OS-based apps, stress tests

System Validation Platform Example

System-Level: Validation Strategies

TEST CONFIGURATIONS

- IP component build configs
 - Multi-core, Neon/VFP engine, cache sizes, interconnect configs, etc
- Systembench topologies
 - Multi-cluster, ACP, DMC, SMC, DMA, etc
- Runtime initialisation
 - Memory regions, performance modes, etc)

TEST PAYLOADS

- OS and Application compatibility testing
 - Linux, Windows, Android, LTP, benchmarks
 - Hypervisor, TrustZone
- MACK (simplified OS for validation) based stress testing
 - MPRIS pthead based tests for MP
 - 'C' Stress testing library (including coherency tests and targeted stress)
- Bare metal directed/random tests
- RIS
- Runtime traffic irritators (DMA, GPU, VIP)

System level: Emulation/FPGA Farm

- Configurable "System-Level" Testbench
- Emulation achieves ~1MHz
- Effective debug visualisation
- More suitable to longer tests (OS boots, benchmarks, longer RIS sequences)

- Limited fixed configurations
- FPGA achieves 10-40MHz
- Poor debug visualisation
- Targeting RIS testing and stress testing

FPGA Farm

- 21 FPGA platforms per rack
 - V2F-2XV6
 - LX760 & LX550T
 - 4GB DDR2 SODIMM
 - JTAG and Trace
 - V2M-P1 motherboard
 - NOR Flash bootloader
 - Basic peripherals
 - UART for SW debug
 - Ethernet for network boot
 - Video/audio
 - SD/CF for local storage
- Cluster Control
 - Redhat Linux box
 - UART concentrator for debug
 - RVI for software debug
 - FPGA and SW image download

Dual Cluster Cortex-A15

- Solution per VE Platform
- Use three V2F-2XV6 boards
 - 3x LX760
 - 3x LX550T
- Processor Support
 - Dual Cluster A15
 - A15 Neon & A7
- Performance
 - 10MHz system speed
 - 2-4GB memory space

Formal Property Verification

ACE proof kit

- Complete set of bus protocol properties
- Low level assertions
 - Prove assertions on LS unit interfaces
- High level properties
 - L2 ECC proof
 - L2 arbitration register slice

Verification Methodology Summary

LESSONS LEARNED

Planning

- Take a step back now and then...
- Make sure to plan for the unplanned

Functional Coverage

- Don't start too early
- Focus on the places where the bugs are

CHALLENGES

Configurability

System feature	Cortex-A15
Number of CPUs	1-4
Interrupt controller	Optional
Number of SPIs	0-224 in steps of 32
Power management	Optional clamp/power-gate control pins
Floating point / NEON	None, VFP Only, VFP and NEON
Error protection	None, L2 cache only, L1 and L2 cache
L2 cache size	512KB, 1MB, 2MB, 4 MB
L2 tag and data slices	00, 01, 02, 11, 12
L2 arb slice	Present or not

- 4*9*2*3*3*4*5*2 = 25920 total configurations ⊗
- Exhaustive crossing of slices, ECC/no-ECC, number of CPUs at unit, top, and system level
- Focused directed testing of less intrusive configuration choices, then pairwise crossing in random testing

Virtualization: A Third Layer of Privilege

- Guest OS same privilege structure as before
 - Can run the same instructions
- New Hyp mode has higher privilege
- VMM controls wide range of OS accesses to hardware

Virtual Memory in Two Stages

Virtual address map of each App on each Guest OS

"Intermediate Physical" address map of each Guest OS

Virtualization - Testing

- Constrained random testing of instruction/event traps at core level
- PageMaker constrained random generation of LPAE/v7 pages
- Unit level : exhaustive testing of the logic in L2TLB/TBW
- PageMaker reused in memory system testbenches and top level testbench
- Independently developed Virtualization AVS
- "Real" hypervisor at system level, running real and rogue OSes/apps

Out of Order Execution

ARM®

OoO in Cortex-A15

OoO - Testing

- Unit Level : detailed testbench models/checking
- Exhaustive fcov on retire/flush/rebuild scenarios
- Independent architectural checking vs. ISS model, AVS

Hardware Coherence

Hardware Coherence in A15

Hardware Coherence - Testing

- ACE functional coverage and protocol checkers
- Unit level : Detailed white-box modeling/checking
- Multi-unit : LS/L2
 - Focused hazard/starvation scenario testing
 - Global ordering data consistency checker
- Top level : RIS tests
 - False-sharing
 - Non-deterministic sharing
- System level : True-sharing, order-sensitive testing

Id® The Architecture for the