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EEL-4713C 
Computer Architecture 

Pipelined Processor - Hazards 
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Outline & Announcements 

°  Introduction to Hazards 

°  Forwarding 

°  1 cycle Load Delay 

°  1 cycle Branch Delay 

°  What makes pipelining hard 
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Pipelining – dealing with hazards 

°  Limits to pipelining: Hazards prevent next instruction from executing 
during its designated clock cycle 
•  structural hazards: HW cannot support this combination of 

instructions 
•  data hazards: instruction depends on result of prior instruction still 

in the pipeline 
•  control hazards: pipelining of branches & other instructions that 

change the PC 

°  Common solution is to stall the pipeline until the hazard is resolved, 
inserting one or more �bubbles� in the pipeline 
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Option 1: Stall to resolve Memory Structural Hazard 
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Option 2: Duplicate to Resolve Structural Hazard 
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•  Separate Instruction Cache (Im) & Data Cache (Dm) 
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Data Hazard on r1 

add r1 ,r2,r3 

sub r4, r1 ,r3 

and r6, r1 ,r7 

or   r8, r1 ,r9 

xor r10, r1 ,r11 
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Data Hazard on r1: 
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•  Dependencies backwards in time are hazards 

Recall, read/write at 
end/beginning of cycles, 

thus values passed 
through reg file 
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sub r4, r1,r3 

and r6,r1,r7 

or   r8,r1,r9 

xor r10,r1,r11 

Option1: HW Stalls to Resolve Data Hazard 
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But recall how the control logic works 

°  The Main Control generates the control signals during Reg/Dec 
•  Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later 
•  Control signals for Mem (MemWr Branch) are used 2 cycles later 
•  Control signals for Wr (MemtoReg MemWr) are used 3 cycles later 
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Option 1: HW stalls pipeline 
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•  HW doesn�t change PC => keeps fetching same instruction 
   & sets control signals  to benign values (0) 
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Option 2: SW inserts independent instructions 
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•  Worst case inserts NOP instructions 
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Option 3 Insight: Data is available!  
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•  Pipeline registers already contain needed data 
Key enabler: Reg file written at 
beginning of cycle, read at end 
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HW Change for �Forwarding� (Bypassing):) 

•  Increase multiplexers to add paths from pipeline registers 
•   
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Load delays 

°  Although Load is fetched during Cycle 1: 
•  Data loaded from memory in cycle 4 
•  The data is NOT written into the Reg File until Cycle 5 
•  We cannot read this value from the Reg File until Cycle 6 
•  2-instruction delay  before the load  take effect 
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Forwarding reduces Data Hazard to 1 cycle:    
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Option1: HW Stalls to Resolve Data Hazard 
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Option 2: SW inserts independent instructions 
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Try producing fast code for 
  a = b + c; 
  d = e – f; 

assuming a, b, c, d ,e, and f  
in memory.  
Slow code: 

  LW  Rb,b 
  LW  Rc,c 
  ADD  Ra,Rb,Rc 
  SW   a,Ra  
  LW  Re,e  
  LW  Rf,f 
  SUB  Rd,Re,Rf 
  SW  d,Rd 

*Software Scheduling to Avoid Load Hazards 
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Try producing fast code for 
  a = b + c; 
  d = e – f; 
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*Software Scheduling to Avoid Load Hazards 
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Try producing fast code for 
  a = b + c; 
  d = e – f; 

assuming a, b, c, d ,e, and f  
in memory.  
Slow code: 

  LW  Rb,b 
  LW  Rc,c 
  ADD  Ra,Rb,Rc 
  SW   a,Ra  
  LW  Re,e  
  LW  Rf,f 
  SUB  Rd,Re,Rf 
  SW  d,Rd 

Software Scheduling to Avoid Load Hazards 

Fast code: 
  LW  Rb,b 
  LW  Rc,c 
  LW  Re,e  
  ADD  Ra,Rb,Rc 
  LW  Rf,f 
  SW   a,Ra  
  SUB  Rd,Re,Rf 
  SW  d,Rd 
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Compiler Avoiding Load Stalls: 

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled
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Branch delay 

°  Although Beq is fetched during Cycle 4: 
•  Target address is NOT written into the PC until the end of Cycle 7 
•  Branch�s target is NOT fetched until Cycle 8 
•  3-instruction delay  before the branch take effect 

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11 

Ifetch Reg/Dec Exec Mem Wr 

Ifetch Reg/Dec Exec Mem Wr 16: R-type 

Ifetch Reg/Dec Exec Mem Wr 

Ifetch Reg/Dec Exec Mem Wr 24: R-type 

12: Beq 
(target is 1000) 

20: R-type 

Clk 

Ifetch Reg/Dec Exec Mem Wr 1000: Target of Br 
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Branch Stall Impact 

°  If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9! 

°  2 part solution: 
•  Determine branch taken or not sooner, AND 
•  Compute taken branch address earlier 

°  MIPS branch tests = 0 or != 0 

°   Solution Option 1: 
•  Move Zero test to ID/RF stage 
•  Adder to calculate new PC in ID/RF stage 
•  1 clock cycle penalty for branch vs. 3 
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Option 1: move HW forward to reduce branch delay 
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Option 2: Define Branch as Delayed 

°  Add instructions after branch that need to execute independent of the 
branch outcome 
•  Worst case, SW inserts NOP into branch delay 

°  Where to get instructions to fill branch delay slot? 
•  Before branch instruction 
•  From the target address: only valuable when branch 
•  From fall through: only valuable when don�t branch 

°  Compiler effectiveness for single branch delay slot: 
•  Profiling: about 50% of slots usefully filled 
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Example 

°  Add r1,r2,r3 

°  Beq r2, r4, target 

°  Next 

°  Target: x 

Branch not depending on add, so swap 
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Branch prediction 

°  Aggressive pipelined processors: 
•  Place branch resolution as early as possible in pipeline 
•  Beyond that, use branch prediction and speculation 

°  Simple branch prediction: 
•  Assume branch not taken, fetch from fall-through 
•  If branch is taken, flush pipeline 

°  More complex techniques are often used: 
•  Predict taken or not taken based on learning of past behavior of a 

branch 
-  Keep counters indexed by PC on a �branch predictor table� 

•  Predict target address before it is calculated 
-  Branch target table, also indexed by PC 
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Branch prediction 

°  Speculative execution: 
•  Trust, but verify 
•  Assume branch prediction is correct, have mechanisms to detect 

otherwise and flush pipeline before any damage to architectural 
state is done (i.e. registers or memory get corrupted) 

°  Example: use the PC to look up a branch predictor table and a branch 
target table 
•  If there is a matching entry for the PC, chances are it is a branch, 

and chances are the direction (taken/not taken) and target match 
the prediction  

•  Go ahead and set the next PC to be the predicted one 
•  Later on in the pipeline, once the branch is resolved (is it a branch? 

Condition satisfied? What is the target?), either let the instructions 
that follow it commit, or discard them 
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Summary – 5-stage pipeline revisited 

°  Pipeline registers 
•  Data and control signals propagate every cycle 

°  Hazard detection logic and forwarding for data hazards 
•  1 cycle load delay slot, R-type has zero delay 

°  Move branch resolution to ID stage to reduce delay to 1 cycle 
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5-stage pipeline revisited 
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5-stage pipeline revisited Hazard detection: 
Load? Rt(load) = Rs,Rt(next)? 

Yes: stall PC, IF/ID, insert bubble 
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Register 
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logic 
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5-stage pipeline revisited ID/EX.MemRead==1 and 
((ID/EX.Rt==IF/ID.Rs) or 

(ID/EX.Rt==IF/ID.Rt)) 
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5-stage pipeline revisited 
Hazard 

detection 

Forwarding 
muxes 

WB=1? Destination reg 
(rt for loads, rd otherwise) 

matches rs or rt of next inst? 
Matches second next? 
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5-stage pipeline revisited Hazard detection: 
Is it a branch? Taken? 

Yes: flush IF/ID register (force nop) 
 

Forwarding 
muxes 

Register 
Comparison 

logic 
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Examples of other hazards 

°  �Read-after-write� (RAW) 
•  Load followed by ALU instruction using same register 
•  Register read must occur after load writes it 

°  �Write-after-write� (WAW) 
•  div.d $f0,$f2,$f4 
•  add.d $f0,$f6,$f8 
•  add.d�s write must occue after div.d�s 

°  �Write-after-read� (WAR) 
•  div.d $f0,$f2,$f4 
•  add.d $f2,$f4,$f6 
•  add.d�s write must occur after div.d�s read 
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When is pipelining hard? 

°  Interrupts: 5 instructions executing in 5 stage pipeline 
•  How to stop the pipeline? 
•  Restart? 
•  Who caused the interrupt? 

Stage  Problem interrupts occurring 
IF  Page fault on instruction fetch; misaligned memory  

 access; memory-protection violation 
ID  Undefined or illegal opcode 
EX  Arithmetic interrupt 
MEM  Page fault on data fetch; misaligned memory   

 access; memory-protection violation 
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When is pipelining hard? 

°  Complex Addressing Modes and Instructions 

°  Address modes: Autoincrement causes register change during 
instruction execution 
•  Now worry about write hazards since write no longer last stage 

-  Write After Read (WAR): Write occurs before independent read 
-  Write After Write (WAW): Writes occur in wrong order, leaving 

wrong result in registers 
-  (Previous data hazard called RAW, for Read After Write) 

°  Memory-memory Move instructions 
•  Multiple page faults 
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When is pipelining hard? 

°  Floating Point: long execution time 
°  Also, may pipeline FP execution unit so that can initiate new 

instructions without waiting for full latency 
FP Instruction  Latency   (MIPS R4000) 
Add, Subtract  4   
Multiply  8   
Divide  36   
Square root  112   
Negate  2   
Absolute value  2   
FP compare  3   
°  Divide, Square Root take -10X to -30X longer than Add 

•  Exceptions? 
•  Adds WAR and WAW hazards since pipelines are no longer 

same length 
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First Generation RISC Pipelines (�Scalar�) 

° All instructions follow same pipeline order (�static schedule�). 
° Register write in last stage 

 – Avoid WAW hazards 
° All register reads performed in first stage after issue. 

 – Avoid WAR hazards 
° Memory access in stage 4 

 – Avoid all memory hazards 
° Control hazards resolved by delayed branch (with fast path) 
° RAW hazards resolved by bypass, except on load results 
which are resolved by delayed load. 
 
Substantial pipelining with very little cost or complexity. 
Machine organization is (slightly) exposed! 
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Examples 

°  Alpha 21064 (92): 
•  up to two instructions per cycle 
•  One floating-point, one integer (in-order) 
•  7 stages (int), 10 stages (FP) 

°  MIPS R3000 (88) 
•  One (integer) instruction per cycle 
•  5 stages (int) 

°  Sparc Micro (91) 
•  5 stages 
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Today�s RISC Pipelines (�Superscalar�) 

° Instructions can be issued out of order in pipeline (�dynamic schedule�) 
 – Must handle WAW, WAR hazards in addition to RAW 
 – Tomasulo, Scoreboarding techniques 
°  Multiple instructions issued in a single cycle 

•  Instructions are �queued up� for execution in a reorder buffer 
•  CPIeffective < 1! 

° Control hazards resolved (speculatively) by predicting branches 
° Single-cycle memory access in best case (cache hit) 

Tens-hundreds if need to go to main memory 
 
°  Aggressive pipelining with rapidly increasing cost/complexity. 
 
°  Diminishing returns as more resources are added 
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Examples 

°  Alpha 21264 (98) 
•  up to 4 instructions per cycle 
•  7 stages (int), 10 stages (FP) 

°  MIPS R10000 (96) 
•  4  instruction per cycle 
•  5 stages (int), 10 stages (FP) 

°  Sparc Ultra II (96) 
•  9 stages (int, FP) 
•  4 instructions issued per cycle 

EEL4713C Ann Gordon-Ross .44 

NetBurst 

°  Successor to Pentium Pro 
•  3 uops per cycle, out-of-order 

°  Key differences 
•  Deeper pipeline for fast clocks: 20 stages 
•  Seven integer execution units vs. 5 
•  Can overlap instructions from two programs in the pipeline 

-  �Hyper-threading�; simultaneous multi-threading 
-  To software, looks as if it has 2 processors 
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Review: Summary of Pipelining Basics 

°  Speed Up proportional to pipeline depth; if ideal CPI is 1, then: 

 

°  Hazards limit performance on computers: 
•  structural: need more HW resources 
•  data: need forwarding, compiler scheduling 
•  control: early evaluation & PC, delayed branch, prediction 

°  Increasing length of pipe increases impact of hazards since pipelining 
helps instruction bandwidth, not latency 

°  Compilers key to reducing cost of data and control hazards 
•  load delay slots 
•  branch delay slots 

°  Exceptions, Instruction Set, FP makes pipelining harder 

  

Speedup= Pipeline depth
1+Pipeline stall cycles per instruction×

Clock cycle unpipelined
Clock cycle pipelined


