
EEL4713C Ann Gordon-Ross .1

EEL-4713C
Computer Architecture

Pipelined Processor - Hazards

EEL4713C Ann Gordon-Ross .2

Outline & Announcements

°  Introduction to Hazards

°  Forwarding

°  1 cycle Load Delay

°  1 cycle Branch Delay

°  What makes pipelining hard

EEL4713C Ann Gordon-Ross .3

Pipelining – dealing with hazards

°  Limits to pipelining: Hazards prevent next instruction from executing
during its designated clock cycle
•  structural hazards: HW cannot support this combination of

instructions
•  data hazards: instruction depends on result of prior instruction still

in the pipeline
•  control hazards: pipelining of branches & other instructions that

change the PC

°  Common solution is to stall the pipeline until the hazard is resolved,
inserting one or more �bubbles� in the pipeline

EEL4713C Ann Gordon-Ross .4

Mem

Single Memory is a Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Reg Mem Reg

A
L

U

Mem Reg Mem Reg

EEL4713C Ann Gordon-Ross .5

Option 1: Stall to resolve Memory Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3(stall)

Instr 4

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

bubble

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

EEL4713C Ann Gordon-Ross .6

Option 2: Duplicate to Resolve Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
U

 Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Im

A
L

U

Reg Dm Reg

A
L

U

Im Reg Dm Reg

•  Separate Instruction Cache (Im) & Data Cache (Dm)

EEL4713C Ann Gordon-Ross .7

Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6, r1 ,r7

or r8, r1 ,r9

xor r10, r1 ,r11

EEL4713C Ann Gordon-Ross .8

Data Hazard on r1:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB A
L

U
 Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Im

A
L

U

Reg Dm Reg

A
L

U

Im Reg Dm Reg

•  Dependencies backwards in time are hazards

Recall, read/write at
end/beginning of cycles,

thus values passed
through reg file

EEL4713C Ann Gordon-Ross .9

sub r4, r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Option1: HW Stalls to Resolve Data Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3
IF ID/RF EX MEM WB A

L
U

 Im Reg Dm Reg

A
L

U

Im Reg Dm

Im bubble bubble bubble

A
L

U

Reg Dm Reg

A
L

U

Im Reg

Im Reg

EEL4713C Ann Gordon-Ross .10

But recall how the control logic works

°  The Main Control generates the control signals during Reg/Dec
•  Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
•  Control signals for Mem (MemWr Branch) are used 2 cycles later
•  Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

IF/ID
 R

egister

ID
/E

x R
egister

E
x/M

em
 R

egister

M
em

/W
r R

egister

Reg/Dec Exec Mem

ExtOp

ALUOp
RegDst

ALUSrc

Branch
MemWr

MemtoReg
RegWr

Main
Control

ExtOp

ALUOp
RegDst

ALUSrc

MemtoReg
RegWr

MemtoReg
RegWr

MemtoReg
RegWr

Branch
MemWr

Branch
MemWr

Wr

EEL4713C Ann Gordon-Ross .11

Option 1: HW stalls pipeline

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

IF ID/RF EX MEM WB A
L

U
 Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

•  HW doesn�t change PC => keeps fetching same instruction
 & sets control signals to benign values (0)

stall

stall

stall

A
L

U

Im Reg Dm

bubble bubble bubble bubble Im

bubble bubble bubble bubble Im

bubble bubble bubble bubble Im

EEL4713C Ann Gordon-Ross .12

Option 2: SW inserts independent instructions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

IF ID/RF EX MEM WB A
L

U
 Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

•  Worst case inserts NOP instructions

nop

nop

nop

A
L

U

Im Reg Dm

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Im

A
L

U

Reg Dm Reg

EEL4713C Ann Gordon-Ross .13

Option 3 Insight: Data is available!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WB A
L

U
 Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Im

A
L

U

Reg Dm Reg

A
L

U

Im Reg Dm Reg

•  Pipeline registers already contain needed data
Key enabler: Reg file written at
beginning of cycle, read at end

EEL4713C Ann Gordon-Ross .14

HW Change for �Forwarding� (Bypassing):)

•  Increase multiplexers to add paths from pipeline registers
• 

EEL4713C Ann Gordon-Ross .15

Load delays

°  Although Load is fetched during Cycle 1:
•  Data loaded from memory in cycle 4
•  The data is NOT written into the Reg File until Cycle 5
•  We cannot read this value from the Reg File until Cycle 6
•  2-instruction delay before the load take effect

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem Wr I0: Load

Ifetch Reg/Dec Exec Mem Wr Plus 1

Ifetch Reg/Dec Exec Mem Wr Plus 2

Ifetch Reg/Dec Exec Mem Wr Plus 3

Ifetch Reg/Dec Exec Mem Wr Plus 4

EEL4713C Ann Gordon-Ross .16

Forwarding reduces Data Hazard to 1 cycle:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

IF ID/RF EX MEM WB A
L

U
 Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Im

A
L

U

Reg Dm Reg

EEL4713C Ann Gordon-Ross .17

Option1: HW Stalls to Resolve Data Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WB A
L

U
 Im Reg Dm Reg

• Check for hazard & stalls

stall bubble bubble bubble bubble Im

and r6,r1,r7

or r8,r1,r9

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Im

A
L

U

Reg Dm Reg

EEL4713C Ann Gordon-Ross .18

Option 2: SW inserts independent instructions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

lw r1, 0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WB

•  Worst case inserts NOP instructions

nop

and r6,r1,r7

or r8,r1,r9

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

Im

A
L

U

Reg Dm Reg

A
L

U
 Im Reg Dm Reg

A
L

U
 Im Reg Dm Reg

EEL4713C Ann Gordon-Ross .19

Try producing fast code for
 a = b + c;
 d = e – f;

assuming a, b, c, d ,e, and f
in memory.
Slow code:

 LW Rb,b
 LW Rc,c
 ADD Ra,Rb,Rc
 SW a,Ra
 LW Re,e
 LW Rf,f
 SUB Rd,Re,Rf
 SW d,Rd

*Software Scheduling to Avoid Load Hazards

EEL4713C Ann Gordon-Ross .20

Try producing fast code for
 a = b + c;
 d = e – f;

assuming a, b, c, d ,e, and f
in memory.
Slow code:

 LW Rb,b
 LW Rc,c
 ADD Ra,Rb,Rc
 SW a,Ra
 LW Re,e
 LW Rf,f
 SUB Rd,Re,Rf
 SW d,Rd

*Software Scheduling to Avoid Load Hazards

stall

stall

EEL4713C Ann Gordon-Ross .21

Try producing fast code for
 a = b + c;
 d = e – f;

assuming a, b, c, d ,e, and f
in memory.
Slow code:

 LW Rb,b
 LW Rc,c
 ADD Ra,Rb,Rc
 SW a,Ra
 LW Re,e
 LW Rf,f
 SUB Rd,Re,Rf
 SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:
 LW Rb,b
 LW Rc,c
 LW Re,e
 ADD Ra,Rb,Rc
 LW Rf,f
 SW a,Ra
 SUB Rd,Re,Rf
 SW d,Rd

EEL4713C Ann Gordon-Ross .22

Compiler Avoiding Load Stalls:

% loads stalling pipeline

0% 20% 40% 60% 80%

tex

spice

gcc

25%

14%

31%

65%

42%

54%

scheduled unscheduled

EEL4713C Ann Gordon-Ross .23

Branch delay

°  Although Beq is fetched during Cycle 4:
•  Target address is NOT written into the PC until the end of Cycle 7
•  Branch�s target is NOT fetched until Cycle 8
•  3-instruction delay before the branch take effect

Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr 16: R-type

Ifetch Reg/Dec Exec Mem Wr

Ifetch Reg/Dec Exec Mem Wr 24: R-type

12: Beq
(target is 1000)

20: R-type

Clk

Ifetch Reg/Dec Exec Mem Wr 1000: Target of Br

EEL4713C Ann Gordon-Ross .24

Branch Stall Impact

°  If CPI = 1, 30% branch, Stall 3 cycles => new CPI = 1.9!

°  2 part solution:
•  Determine branch taken or not sooner, AND
•  Compute taken branch address earlier

°  MIPS branch tests = 0 or != 0

°  Solution Option 1:
•  Move Zero test to ID/RF stage
•  Adder to calculate new PC in ID/RF stage
•  1 clock cycle penalty for branch vs. 3

EEL4713C Ann Gordon-Ross .25

Option 1: move HW forward to reduce branch delay

25

A
dder

IF/ID

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1
RS2

Imm

M
U

X

ID
/EX

EEL4713C Ann Gordon-Ross .26

Option 2: Define Branch as Delayed

°  Add instructions after branch that need to execute independent of the
branch outcome
•  Worst case, SW inserts NOP into branch delay

°  Where to get instructions to fill branch delay slot?
•  Before branch instruction
•  From the target address: only valuable when branch
•  From fall through: only valuable when don�t branch

°  Compiler effectiveness for single branch delay slot:
•  Profiling: about 50% of slots usefully filled

EEL4713C Ann Gordon-Ross .27

Example

°  Add r1,r2,r3

°  Beq r2, r4, target

°  Next

°  Target: x

Branch not depending on add, so swap

EEL4713C Ann Gordon-Ross .28

Branch prediction

°  Aggressive pipelined processors:
•  Place branch resolution as early as possible in pipeline
•  Beyond that, use branch prediction and speculation

°  Simple branch prediction:
•  Assume branch not taken, fetch from fall-through
•  If branch is taken, flush pipeline

°  More complex techniques are often used:
•  Predict taken or not taken based on learning of past behavior of a

branch
-  Keep counters indexed by PC on a �branch predictor table�

•  Predict target address before it is calculated
-  Branch target table, also indexed by PC

EEL4713C Ann Gordon-Ross .29

Branch prediction

°  Speculative execution:
•  Trust, but verify
•  Assume branch prediction is correct, have mechanisms to detect

otherwise and flush pipeline before any damage to architectural
state is done (i.e. registers or memory get corrupted)

°  Example: use the PC to look up a branch predictor table and a branch
target table
•  If there is a matching entry for the PC, chances are it is a branch,

and chances are the direction (taken/not taken) and target match
the prediction

•  Go ahead and set the next PC to be the predicted one
•  Later on in the pipeline, once the branch is resolved (is it a branch?

Condition satisfied? What is the target?), either let the instructions
that follow it commit, or discard them

EEL4713C Ann Gordon-Ross .30

Summary – 5-stage pipeline revisited

°  Pipeline registers
•  Data and control signals propagate every cycle

°  Hazard detection logic and forwarding for data hazards
•  1 cycle load delay slot, R-type has zero delay

°  Move branch resolution to ID stage to reduce delay to 1 cycle

EEL4713C Ann Gordon-Ross .31

5-stage pipeline revisited
Hazard

detection

Forwarding
muxes

Register
Comparison

logic

EEL4713C Ann Gordon-Ross .32

5-stage pipeline revisited Hazard detection:
Load? Rt(load) = Rs,Rt(next)?

Yes: stall PC, IF/ID, insert bubble

Forwarding
muxes

Register
Comparison

logic

EEL4713C Ann Gordon-Ross .33

5-stage pipeline revisited ID/EX.MemRead==1 and
((ID/EX.Rt==IF/ID.Rs) or

(ID/EX.Rt==IF/ID.Rt))

Forwarding
muxes

Register
Comparison

logic

Clear control
Signals for EX, M, WB

Disable writing
PC, IF/ID
register

EEL4713C Ann Gordon-Ross .34

5-stage pipeline revisited
Hazard

detection

Forwarding
muxes

WB=1? Destination reg
(rt for loads, rd otherwise)

matches rs or rt of next inst?
Matches second next?

EEL4713C Ann Gordon-Ross .35

5-stage pipeline revisited Hazard detection:
Is it a branch? Taken?

Yes: flush IF/ID register (force nop)

Forwarding
muxes

Register
Comparison

logic

EEL4713C Ann Gordon-Ross .36

Examples of other hazards

°  �Read-after-write� (RAW)
•  Load followed by ALU instruction using same register
•  Register read must occur after load writes it

°  �Write-after-write� (WAW)
•  div.d $f0,$f2,$f4
•  add.d $f0,$f6,$f8
•  add.d�s write must occue after div.d�s

°  �Write-after-read� (WAR)
•  div.d $f0,$f2,$f4
•  add.d $f2,$f4,$f6
•  add.d�s write must occur after div.d�s read

EEL4713C Ann Gordon-Ross .37

When is pipelining hard?

°  Interrupts: 5 instructions executing in 5 stage pipeline
•  How to stop the pipeline?
•  Restart?
•  Who caused the interrupt?

Stage Problem interrupts occurring
IF Page fault on instruction fetch; misaligned memory

 access; memory-protection violation
ID Undefined or illegal opcode
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory

 access; memory-protection violation

EEL4713C Ann Gordon-Ross .38

When is pipelining hard?

°  Complex Addressing Modes and Instructions

°  Address modes: Autoincrement causes register change during
instruction execution
•  Now worry about write hazards since write no longer last stage

-  Write After Read (WAR): Write occurs before independent read
-  Write After Write (WAW): Writes occur in wrong order, leaving

wrong result in registers
-  (Previous data hazard called RAW, for Read After Write)

°  Memory-memory Move instructions
•  Multiple page faults

EEL4713C Ann Gordon-Ross .39

When is pipelining hard?

°  Floating Point: long execution time
°  Also, may pipeline FP execution unit so that can initiate new

instructions without waiting for full latency
FP Instruction Latency (MIPS R4000)
Add, Subtract 4
Multiply 8
Divide 36
Square root 112
Negate 2
Absolute value 2
FP compare 3
°  Divide, Square Root take -10X to -30X longer than Add

•  Exceptions?
•  Adds WAR and WAW hazards since pipelines are no longer

same length

EEL4713C Ann Gordon-Ross .40

First Generation RISC Pipelines (�Scalar�)

° All instructions follow same pipeline order (�static schedule�).
° Register write in last stage

 – Avoid WAW hazards
° All register reads performed in first stage after issue.

 – Avoid WAR hazards
° Memory access in stage 4

 – Avoid all memory hazards
° Control hazards resolved by delayed branch (with fast path)
° RAW hazards resolved by bypass, except on load results
which are resolved by delayed load.

Substantial pipelining with very little cost or complexity.
Machine organization is (slightly) exposed!

EEL4713C Ann Gordon-Ross .41

Examples

°  Alpha 21064 (92):
•  up to two instructions per cycle
•  One floating-point, one integer (in-order)
•  7 stages (int), 10 stages (FP)

°  MIPS R3000 (88)
•  One (integer) instruction per cycle
•  5 stages (int)

°  Sparc Micro (91)
•  5 stages

EEL4713C Ann Gordon-Ross .42

Today�s RISC Pipelines (�Superscalar�)

° Instructions can be issued out of order in pipeline (�dynamic schedule�)
 – Must handle WAW, WAR hazards in addition to RAW
 – Tomasulo, Scoreboarding techniques
°  Multiple instructions issued in a single cycle

•  Instructions are �queued up� for execution in a reorder buffer
•  CPIeffective < 1!

° Control hazards resolved (speculatively) by predicting branches
° Single-cycle memory access in best case (cache hit)

Tens-hundreds if need to go to main memory

°  Aggressive pipelining with rapidly increasing cost/complexity.

°  Diminishing returns as more resources are added

EEL4713C Ann Gordon-Ross .43

Examples

°  Alpha 21264 (98)
•  up to 4 instructions per cycle
•  7 stages (int), 10 stages (FP)

°  MIPS R10000 (96)
•  4 instruction per cycle
•  5 stages (int), 10 stages (FP)

°  Sparc Ultra II (96)
•  9 stages (int, FP)
•  4 instructions issued per cycle

EEL4713C Ann Gordon-Ross .44

NetBurst

°  Successor to Pentium Pro
•  3 uops per cycle, out-of-order

°  Key differences
•  Deeper pipeline for fast clocks: 20 stages
•  Seven integer execution units vs. 5
•  Can overlap instructions from two programs in the pipeline

-  �Hyper-threading�; simultaneous multi-threading
-  To software, looks as if it has 2 processors

EEL4713C Ann Gordon-Ross .45

Review: Summary of Pipelining Basics

°  Speed Up proportional to pipeline depth; if ideal CPI is 1, then:

°  Hazards limit performance on computers:
•  structural: need more HW resources
•  data: need forwarding, compiler scheduling
•  control: early evaluation & PC, delayed branch, prediction

°  Increasing length of pipe increases impact of hazards since pipelining
helps instruction bandwidth, not latency

°  Compilers key to reducing cost of data and control hazards
•  load delay slots
•  branch delay slots

°  Exceptions, Instruction Set, FP makes pipelining harder

Speedup= Pipeline depth
1+Pipeline stall cycles per instruction×

Clock cycle unpipelined
Clock cycle pipelined

