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The Motivation for Caches 

°  Motivation: 
•  Large memories (DRAM) are slow 
•  Small memories (SRAM) are fast 

°  Make the average access time  small by: 
•  Servicing most accesses from a small, fast memory. 

°  Reduce the bandwidth required of the large memory 

Processor 

Memory System 

Cache DRAM 
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Outline of Today’s Lecture 

°  Introduction to Memory Hierarchies & caches 

°  Cache write and replacement policies 
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*An Expanded View of the Memory System 
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The Principle of Locality 

Address Space 0 memsize 

Probability 
of reference 

What are the principles of Locality? 
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The Principle of Locality 

°  The Principle of Locality: 
•  Program access a relatively small portion of the address space at 

any instant of time. 
•  Example: 90% of time in 10% of the code 

°  Two Different Types of Locality: 
•  Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon. 
•  Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon. 

Address Space 0 memsize 

Probability 
of reference 
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Memory Hierarchy: Principles of Operation 

°  2-level hierarchy example 

°  At any given time, data is copied between only 2 adjacent levels: 
•  Upper Level (Cache) : the one closer to the processor 

-  Smaller, faster, and uses more expensive technology 
•  Lower Level (Memory): the one further away from the processor 

-  Bigger, slower, and uses less expensive technology 

°  Block: 
•  The minimum unit of information that can either be present or not 

present in the two-level hierarchy 
Lower Level 
(Memory) Upper Level 

(Cache) 
To Processor 

From Processor 
Blk X 

Blk Y 
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Memory Hierarchy: Terminology 

°  Hit: data appears in some block in the upper level (example: Block X)  
•  Hit Rate: the fraction of memory accesses found in the upper level 
•  Hit Time: Time to access the upper level which consists of 

RAM access time + Time to determine hit/miss 

°  Miss: data needs to be retrieved from a block in the lower level (Block Y) 
•  Miss Rate  = 1 - (Hit Rate) 
•  Miss Penalty = Time to replace a block in the upper level  +  

Time to deliver the block the processor 

°  Hit Time << Miss Penalty 

Lower Level 
(Memory) Upper Level 

(Cache) 
To Processor 

From Processor 
Blk X 

Blk Y 
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Basic Terminology: Typical Values 

  Typical Values 
Block (line) size  4 - 128 bytes 
Hit time  1 - 4 cycles 
Miss penalty  10 - 100 cycles (and increasing) 
Miss rate  1% - 20% 
Cache Size  64 KB - 8 MB 
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How Do Caches Work? 

°  Temporal Locality (Locality in Time): If an item is referenced, it will tend 
to be referenced again soon. 

•  Keep more recently accessed data items closer to the processor 

°  Spatial Locality (Locality in Space): If an item is referenced, items 
whose addresses are close by tend to be referenced soon. 

•  Move blocks consisting of contiguous words to the cache 

Lower Level 
Memory Upper Level 

Cache 
To Processor 

From Processor 
Blk X 

Blk Y 
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The Simplest Cache: Direct-Mapped Cache 

Memory 

4  Byte Direct Mapped Cache 

Memory Address 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Cache Index 
0 
1 
2 
3 

°  Location 0 can be occupied by data from: 
•  Memory location 0, 4, 8, ... etc. 
•  In general: any memory location 

whose 2 LSBs of the address are 0s 
•  Address<1:0>  => cache index 

°  How can we tell which block is in the cache? 
•  Valid bit 
•  Tag 
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Cache Tag and  Cache Index 

°  Assume a 32-bit memory (byte) address: 
•  A 2^N bytes direct mapped cache: 

-  Cache Index: The lower N bits of the memory address 
-  Cache Tag: The upper (32 - N) bits of the memory address 

Cache Index 

0 
1 
2 
3 

2    - 1 N 

: 

2 N Bytes 
Direct Mapped Cache 

Byte 0 
Byte 1 
Byte 2 
Byte 3 

Byte 2**N -1 

0 N 31 

: 

Cache Tag Example: 0x50 Ex: 0x03 

0x50 

Stored as part 
of the cache “state” Valid Bit 

: 
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Cache Access Example 

Access 000 01 

Start Up 

000 M [00001] 
Access 010 10 

(miss) 

(miss) 

000 M [00001] 
010 M [01010] 

Tag Data V 

000 M [00001] 
010 M [01010] 

Miss Handling: 
Load Data Write Tag & Set V 

Load Data 

Write Tag & Set V 

Access 000 01 
(HIT) 

000 M [00001] 
010 M [01010] Access 010 10 

(HIT) 

°  Caches begin empty: 
•  A lot of misses at start up: 

Compulsory Misses 
-  (Cold start misses) 
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Definition of a Cache Block 

°  Cache Block (cache “line”): cache data that has its own cache tag 

°  Our previous  “extreme” example: 
•  4-byte Direct Mapped cache: Block Size = 1 Byte 
•  Takes advantage of Temporal Locality: If a byte is referenced, 

it will tend to be referenced soon. 
•  Did not take advantage of Spatial Locality: If a byte is referenced, 

its adjacent bytes will be referenced soon. 

°  In order to take advantage of Spatial Locality: increase the block size 

Direct Mapped Cache Data 
Byte 0 
Byte 1 
Byte 2 
Byte 3 

Cache Tag Valid 
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Example: 1 KB Direct Mapped Cache with 32 B Blocks 

°  For a 2 ** N byte cache: 
•  The uppermost (32 - N) bits are always the Cache Tag 
•  The lowest M bits are the Byte Select (Block Size = 2 ** M) 

Cache Index 

0 
1 
2 
3 

: 

 Cache Data 
Byte 0 

0 4 31 

: 

Cache Tag Example: 0x50 
Ex: 0x01 

0x50 

Stored as part 
of the cache “state” 

Valid Bit 

: 
31 

Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

Byte 992 Byte 1023 : 

 Cache Tag 

Byte Select 
Ex: 0x00 

9 
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Block size tradeoffs 

°  Larger block helps with spatial locality 

°  However, transferring a large block from memory to cache takes longer 
than transferring a small block 

•  “miss penalty” 

°  Important to understand implication of block sizes in the average time 
to service a memory request 

°  Average memory access time (AMAT) 
•  Hit_time * (1 – miss_rate) + miss_rate*miss_penalty 

°  Cache design goals: 
•  Short hit time 
•  Small miss rate 
•  Short miss penalty 
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Components of miss penalty 

Control 

Datapath 

Memory 

Processor 

M
em

ory 

Memory 
Memory 

M
em

ory 

Memory latency: 
depends on memory size, 
technology Transfer time: 

(block size/bus width)*bus cycle 

Penalty ! latency + transfer time 
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*Block Size Tradeoff 

°  In general, larger block size take advantage of spatial locality BUT: 
•  Larger block size means larger miss penalty: 

-  Takes longer time to fill up the block 
•  If block size is too big relative to cache size, miss rate will go up 

°  Average Access Time:  
•  = Hit Time x (1 - Miss Rate)  +  Miss Penalty x Miss Rate 

Miss 
Penalty 

Block Size 

Miss 
Rate Exploits Spatial Locality 

Fewer blocks:  
compromises 
temporal locality 

Average 
Access 

Time 

Increased Miss Penalty 
& Miss Rate 

Block Size Block Size 
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Another Extreme Example 

°  Cache Size = 4 bytes    Block Size = 4 bytes 
•  Only ONE entry in the cache 

°  If an item is accessed, likely  that it will be accessed again soon 
•  But it is unlikely that it will be accessed again immediately!!! 
•  The next access will likely to be a miss again 

-  Continually loading data into the cache but 
discard (force out) them before they are used again 

°  Conflict Misses are misses caused by: 
•  Different memory locations  mapped to the same cache index 

-  Solution 1: make the cache size bigger  
-  Solution 2: Multiple entries for the same Cache Index 

0 
 Cache Data Valid Bit 

Byte 0 Byte 1 Byte 3 
 Cache Tag 

Byte 2 
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Outline 

°  Set-associative caches 

°  Simulation experiments 

°  Replacement and write policies 
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*Our original direct-mapped cache 

°  Implementation diagram 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Cache Block 

Compare 
Adr Tag 

Hit 

Cache Index Cache Tag 
Address of a lw/sw 
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A Two-way Set Associative Cache 

°  N-way set associative: N entries for each Cache Index 
•  N direct mapped caches operate in parallel 

°  Example: Two-way set associative cache 
•  Cache Index selects a “set” from the cache 
•  The two tags in the set are compared in parallel 
•  Data is selected based on the tag result 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Mux 0 1 Sel1 Sel0 

Cache Block 

Compare 
Adr Tag 

Compare 

OR 

Hit 
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Disadvantage of Set Associative Cache 

°  N-way Set Associative Cache versus Direct Mapped Cache: 
•  N comparators vs. 1 
•  Extra MUX delay for the data – critical path! 
•  Data comes AFTER Hit/Miss 

°  In a direct mapped cache, Cache Block is available BEFORE Hit/Miss: 
•  Possible to assume a hit and continue.  Recover later if miss. 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Mux 0 1 Sel1 Sel0 

Cache Block 

Compare 
Adr Tag 

Compare 

OR 

Hit 
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Critical path: direct-mapped cache 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Cache Block 

Compare 
Adr Tag 

Hit 

Cache Index Cache Tag 
Address of a lw/sw 

Tag delay 
Data delay 
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Critical path: Set Associative Cache 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Mux 0 1 Sel1 Sel0 

Cache Block 

Compare 
Adr Tag 

Compare 

OR 

Hit 

Tag delay 
Data delay 
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Examples 

°  Cacti simulation 
•  Same size, block, feature size 
•  Cycle times: Direct-mapped versus 2-way 

-  DM: 0.654811 ns  
-  2-way: 0.725646 ns 

°  Simplescalar simulation 
•  Hit rates: direct mapped versus 2-way 

°  Impact on Average Memory Access Time? 
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Simplescalar simulation 

°  Direct-mapped 

°  il1.accesses 46358 # total number of accesses 

°  il1.hits 42336 # total number of hits  

°  dl1.accesses 13278 # total number of accesses 

°  dl1.hits 12620 # total number of hits  

°  2-way set associative 

°  il1.accesses 46358 # total number of accesses 

°  il1.hits 44368 # total number of hits  

°  dl1.accesses 13278 # total number of accesses 

°  dl1.hits 12870 # total number of hits  
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A Summary on Sources of Cache Misses 

°  Compulsory (cold start, first reference): first access to a block 
•  “Cold” fact of life: not a whole lot you can do about it 

°  Conflict (collision): 
•  Multiple  memory locations  mapped 

to the same cache location 
•  Solution 1: increase  cache size 
•  Solution 2: increase associativity 

°  Capacity: 
•  Cache cannot contain all blocks access by the program 
•  Solution: increase cache size 

°  Invalidation: other process (e.g., I/O, other CPU) updates memory 
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And yet Another Extreme Example: Fully Associative 

°  Fully Associative Cache -- push the set associative idea to its limit! 
•  Forget about the Cache Index 
•  Compare the Cache Tags of  all cache entries in parallel 
•  Example: Block Size = 2 B blocks, we need N 27-bit comparators 

°  By definition: Conflict Miss = 0 for a fully associative cache 

: 

 Cache Data 
Byte 0 

0 4 31 

: 

Cache Tag (27 bits long) 

Valid Bit 

: 

Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

 Cache Tag 

Byte Select 
Ex: 0x01 

X 

X 
X 

X 

X 
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Making room for a new block 

°  Direct Mapped Cache: 
•  Each memory location can only mapped to 1 cache location 
•  No  need to make any decision 

-  Current item replaced the previous item in that cache location 

°  N-way Set Associative Cache: 
•  Each memory location have a choice of N  cache locations 

°  Fully Associative Cache: 
•  Each memory location can be placed in ANY cache location 

°  Cache miss in a N-way Set Associative or Fully Associative Cache: 
•  Bring in new block from memory 
•  Throw out a cache block to make room for the new block 
•  Need to make a decision on which block to throw out! 
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Cache Block Replacement Policy 

°  Random Replacement: 
•  Hardware randomly selects a cache item and throws it out 

°  Least Recently Used: 
•  Hardware keeps track of the access  history 
•  Replace the entry that has not been used for the longest time 

°  Example of a Simple “Pseudo” Least Recently Used Implementation: 
•  Assume 64 Fully Associative Entries 
•  Hardware  replacement pointer points to one cache entry 
•  Whenever an access is made to the entry the pointer points to: 

-  Move the pointer to the next entry 
•  Otherwise: do not move the pointer 

 

: 

Entry 0 
Entry 1 

Entry  63 

Replacement 
Pointer 
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*Cache Write Policy: Write Through versus Write Back 

°  Cache read is much easier to handle than cache write: 
•  Instruction cache is much easier to design than data cache 

°  Cache write: 
•  How do we keep data in the cache  and memory consistent? 

°  Two options (decision time again :-) 
•  Write Back: write to cache only.  Write the cache block to memory 

 when that cache block is being replaced on a cache miss. 
-  Need a “dirty” bit for each cache block 
-  Greatly reduce the memory bandwidth requirement 
-  Control can be complex 

•  Write Through: write to cache and memory at the same time. 
-  Isn’t memory too slow for this? 
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Write Buffer for Write Through 

°  A Write Buffer is needed between the Cache and Memory 
•  Processor: writes data into the cache and the write buffer 
•  Memory controller: write contents of the buffer to memory 

°  Write buffer is just a FIFO: 
•  Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle 

°  However if: 
•  Store frequency   >  1 / DRAM write cycle 
•  Write buffer saturation 

Processor 
Cache 

Write Buffer 

DRAM 
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Write Buffer Saturation 

°  Store frequency   >  1 / DRAM write cycle 
•  If this condition exist for a long period of time (CPU cycle time too 

quick and/or too many store instructions in a row): 
-  Store buffer will overflow no matter how big you make it 

°  Solution for write buffer saturation: 
•  Use a write back cache 
•  Install a second level (L2) cache: 

Processor 
Cache 

Write Buffer 

DRAM 

Processor 
Cache 

Write Buffer 

DRAM L2 
Cache 
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Write Allocate versus Not Allocate 

°  Assume: a 16-bit write to memory location 0x0 causes a miss 
•  Do we read in the rest of the block (Bytes 2, 3, ... 31)? 

Yes: Write Allocate (usually associated w/ write-back) 
No: Write Not Allocate (write-through) 

Cache Index 

0 
1 
2 
3 

: 

 Cache Data 
Byte 0 

0 4 31 

: 

Cache Tag Example: 0x00 
Ex: 0x00 

0x01 
Valid Bit 

: 
31 

Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 

Byte 992 Byte 1023 : 

 Cache Tag 

Byte Select 
Ex: 0x00 

9 
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What is a Sub-block? 

°  Sub-block: 
•  A unit within a block that has its own valid bit 
•  Example: 1 KB Direct Mapped Cache, 32-B Block, 8-B Sub-block 

-  Each cache entry will have: 32/8 = 4 valid bits 

°  Write miss: only the bytes in that sub-block are brought in. 

0 
1 
2 
3 

: 

 Cache Data 

: 

SB
0’

s V
 B

it 

: 

31 

 Cache Tag SB
1’

s V
 B

it 

: 
SB

2’
s V

 B
it 

: 
SB

3’
s V

 B
it 

: 

Sub-block0 Sub-block1 Sub-block2 Sub-block3 

: B0 B7 : B24 B31 

Byte 992 Byte 1023 
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“Unified” versus “Split” caches 

°  Unified: both instructions and data co-reside in the same cache 

°  Split: different instruction (I) and data (D) caches 

°  Typically, today’s on-chip caches closest to processor (L1) are split 
•  I-cache typically has better locality and can be made smaller to be 

faster (remember instruction fetch is in the critical path!) 
•  Separate caches avoid data blocks replacing instruction blocks 

°  L2+ caches typically unified 
•  Much larger; chance of replacement small 
•  Not in the critical path 
•  A unified design is simpler to implement 
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Multi-level caches 

°  Close to processor: 
•  Level-1 cache 
•  Goal: maximize hit rate while keeping cycle time as close as 

possible to datapath 
•  Instruction fetch in a cycle; data access in a cycle 
 

°  Far from (or outside) processor 
•  Level-2 (-3) caches 
•  Goal is to maximize hit rate while keeping cost (I.e. area) within a 

target design goal 
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Example: IBM Power4 

Source: http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html 
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Example (cont) 

Source: http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html 
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Power4 cache hierarchy 

°  Level 1, on-chip 

°  Power-4 has two processors on a chip 
•  Each processor has its own L1 cache 
•  Each cache is split 

°  L1 Instruction Cache 
•  Direct mapped, 128-byte block managed as 4 32-byte sub-blocks  
•  128 KB (64 KB per processor) 

°  L1 Data Cache 
•  2-way, 128-byte block 
•  64 KB (32 KB per processor) 

°  One 32-byte read or write per cycle 
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Power4 cache hierarchy 

°  Level 2, on-chip 

°  Still SRAM 

°  Shared across two processors 

°  L2 configuration 
•  unified 
•  8-way, 128-byte block 
•  1.5 MB 
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Power4 cache hierarchy 

°  Level 3, off-chip 
•  Directory tags for multiprocessing on-chip 

°  Embedded DRAM 

°  L3 configuration 
•  8-way, 512-byte block managed as 4 128-byte sub-blocks 
•  32 MB 
•  shared 
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Power5 cache hierarchy 

°  Improvements in size, associativity to reduce capacity/conflict misses 

°  L1 I-cache: 2-way set associative 

°  L1 D-cache: 4-way set associative 

°  L2 unified cache: 1.92MB, 10-way associative, 13-cycle latency 

°  L3 unified cache: 36MB, 12-way associative, 87-cycle latency 

°  Memory: 220-cycle latency 

°  http://www.realworldtech.com/page.cfm?ArticleID=RWT100404214638&p=3 
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Summary: 

°  The Principle of Locality: 
•  Programs access a relatively small portion of the address space at 

any instant of time. 
-  Temporal Locality: Locality in Time 
-  Spatial Locality: Locality in Space 

°  Three Major Categories of Cache Misses: 
•  Compulsory Misses: cold start misses. 
•  Conflict Misses:  increase cache size and/or associativity. 
•  Capacity Misses: increase cache size 

°  Write Policy: 
•  Write Through: need a write buffer 
•  Write Back: control can be complex 


