
 EEL-4713 Ann Gordon-Ross 1

EEL-4713
Computer Architecture

Memory hierarchies

 EEL-4713 Ann Gordon-Ross 2

The Motivation for Caches

°  Motivation:
•  Large memories (DRAM) are slow
•  Small memories (SRAM) are fast

°  Make the average access time small by:
•  Servicing most accesses from a small, fast memory.

°  Reduce the bandwidth required of the large memory

Processor

Memory System

Cache DRAM

 EEL-4713 Ann Gordon-Ross 3

Outline of Today’s Lecture

°  Introduction to Memory Hierarchies & caches

°  Cache write and replacement policies

 EEL-4713 Ann Gordon-Ross 4

*An Expanded View of the Memory System

Control

Datapath

Memory

Processor

M
em

ory

Memory
Memory

M
em

ory

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:
Size:

Cost:

 EEL-4713 Ann Gordon-Ross 5

The Principle of Locality

Address Space 0 memsize

Probability
of reference

What are the principles of Locality?

 EEL-4713 Ann Gordon-Ross 6

The Principle of Locality

°  The Principle of Locality:
•  Program access a relatively small portion of the address space at

any instant of time.
•  Example: 90% of time in 10% of the code

°  Two Different Types of Locality:
•  Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon.
•  Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon.

Address Space 0 memsize

Probability
of reference

 EEL-4713 Ann Gordon-Ross 7

Memory Hierarchy: Principles of Operation

°  2-level hierarchy example

°  At any given time, data is copied between only 2 adjacent levels:
•  Upper Level (Cache) : the one closer to the processor

-  Smaller, faster, and uses more expensive technology
•  Lower Level (Memory): the one further away from the processor

-  Bigger, slower, and uses less expensive technology

°  Block:
•  The minimum unit of information that can either be present or not

present in the two-level hierarchy
Lower Level
(Memory) Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

 EEL-4713 Ann Gordon-Ross 8

Memory Hierarchy: Terminology

°  Hit: data appears in some block in the upper level (example: Block X)
•  Hit Rate: the fraction of memory accesses found in the upper level
•  Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

°  Miss: data needs to be retrieved from a block in the lower level (Block Y)
•  Miss Rate = 1 - (Hit Rate)
•  Miss Penalty = Time to replace a block in the upper level +

Time to deliver the block the processor

°  Hit Time << Miss Penalty

Lower Level
(Memory) Upper Level

(Cache)
To Processor

From Processor
Blk X

Blk Y

 EEL-4713 Ann Gordon-Ross 9

Basic Terminology: Typical Values

 Typical Values
Block (line) size 4 - 128 bytes
Hit time 1 - 4 cycles
Miss penalty 10 - 100 cycles (and increasing)
Miss rate 1% - 20%
Cache Size 64 KB - 8 MB

 EEL-4713 Ann Gordon-Ross 10

How Do Caches Work?

°  Temporal Locality (Locality in Time): If an item is referenced, it will tend
to be referenced again soon.

•  Keep more recently accessed data items closer to the processor

°  Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

•  Move blocks consisting of contiguous words to the cache

Lower Level
Memory Upper Level

Cache
To Processor

From Processor
Blk X

Blk Y

 EEL-4713 Ann Gordon-Ross 11

The Simplest Cache: Direct-Mapped Cache

Memory

4 Byte Direct Mapped Cache

Memory Address
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache Index
0
1
2
3

°  Location 0 can be occupied by data from:
•  Memory location 0, 4, 8, ... etc.
•  In general: any memory location

whose 2 LSBs of the address are 0s
•  Address<1:0> => cache index

°  How can we tell which block is in the cache?
•  Valid bit
•  Tag

 EEL-4713 Ann Gordon-Ross 12

Cache Tag and Cache Index

°  Assume a 32-bit memory (byte) address:
•  A 2^N bytes direct mapped cache:

-  Cache Index: The lower N bits of the memory address
-  Cache Tag: The upper (32 - N) bits of the memory address

Cache Index

0
1
2
3

2 - 1 N

:

2 N Bytes
Direct Mapped Cache

Byte 0
Byte 1
Byte 2
Byte 3

Byte 2**N -1

0 N 31

:

Cache Tag Example: 0x50 Ex: 0x03

0x50

Stored as part
of the cache “state” Valid Bit

:

 EEL-4713 Ann Gordon-Ross 13

Cache Access Example

Access 000 01

Start Up

000 M [00001]
Access 010 10

(miss)

(miss)

000 M [00001]
010 M [01010]

Tag Data V

000 M [00001]
010 M [01010]

Miss Handling:
Load Data Write Tag & Set V

Load Data

Write Tag & Set V

Access 000 01
(HIT)

000 M [00001]
010 M [01010] Access 010 10

(HIT)

°  Caches begin empty:
•  A lot of misses at start up:

Compulsory Misses
-  (Cold start misses)

 EEL-4713 Ann Gordon-Ross 14

Definition of a Cache Block

°  Cache Block (cache “line”): cache data that has its own cache tag

°  Our previous “extreme” example:
•  4-byte Direct Mapped cache: Block Size = 1 Byte
•  Takes advantage of Temporal Locality: If a byte is referenced,

it will tend to be referenced soon.
•  Did not take advantage of Spatial Locality: If a byte is referenced,

its adjacent bytes will be referenced soon.

°  In order to take advantage of Spatial Locality: increase the block size

Direct Mapped Cache Data
Byte 0
Byte 1
Byte 2
Byte 3

Cache Tag Valid

 EEL-4713 Ann Gordon-Ross 15

Example: 1 KB Direct Mapped Cache with 32 B Blocks

°  For a 2 ** N byte cache:
•  The uppermost (32 - N) bits are always the Cache Tag
•  The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0 4 31

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9

 EEL-4713 Ann Gordon-Ross 16

Block size tradeoffs

°  Larger block helps with spatial locality

°  However, transferring a large block from memory to cache takes longer
than transferring a small block

•  “miss penalty”

°  Important to understand implication of block sizes in the average time
to service a memory request

°  Average memory access time (AMAT)
•  Hit_time * (1 – miss_rate) + miss_rate*miss_penalty

°  Cache design goals:
•  Short hit time
•  Small miss rate
•  Short miss penalty

 EEL-4713 Ann Gordon-Ross 17

Components of miss penalty

Control

Datapath

Memory

Processor

M
em

ory

Memory
Memory

M
em

ory

Memory latency:
depends on memory size,
technology Transfer time:

(block size/bus width)*bus cycle

Penalty ! latency + transfer time

 EEL-4713 Ann Gordon-Ross 18

*Block Size Tradeoff

°  In general, larger block size take advantage of spatial locality BUT:
•  Larger block size means larger miss penalty:

-  Takes longer time to fill up the block
•  If block size is too big relative to cache size, miss rate will go up

°  Average Access Time:
•  = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

 EEL-4713 Ann Gordon-Ross 19

Another Extreme Example

°  Cache Size = 4 bytes Block Size = 4 bytes
•  Only ONE entry in the cache

°  If an item is accessed, likely that it will be accessed again soon
•  But it is unlikely that it will be accessed again immediately!!!
•  The next access will likely to be a miss again

-  Continually loading data into the cache but
discard (force out) them before they are used again

°  Conflict Misses are misses caused by:
•  Different memory locations mapped to the same cache index

-  Solution 1: make the cache size bigger
-  Solution 2: Multiple entries for the same Cache Index

0
 Cache Data Valid Bit

Byte 0 Byte 1 Byte 3
 Cache Tag

Byte 2

 EEL-4713 Ann Gordon-Ross 20

Outline

°  Set-associative caches

°  Simulation experiments

°  Replacement and write policies

 EEL-4713 Ann Gordon-Ross 21

*Our original direct-mapped cache

°  Implementation diagram

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Cache Index Cache Tag
Address of a lw/sw

 EEL-4713 Ann Gordon-Ross 22

A Two-way Set Associative Cache

°  N-way set associative: N entries for each Cache Index
•  N direct mapped caches operate in parallel

°  Example: Two-way set associative cache
•  Cache Index selects a “set” from the cache
•  The two tags in the set are compared in parallel
•  Data is selected based on the tag result

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

 EEL-4713 Ann Gordon-Ross 23

Disadvantage of Set Associative Cache

°  N-way Set Associative Cache versus Direct Mapped Cache:
•  N comparators vs. 1
•  Extra MUX delay for the data – critical path!
•  Data comes AFTER Hit/Miss

°  In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
•  Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
 EEL-4713 Ann Gordon-Ross 24

Critical path: direct-mapped cache

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Cache Block

Compare
Adr Tag

Hit

Cache Index Cache Tag
Address of a lw/sw

Tag delay
Data delay

 EEL-4713 Ann Gordon-Ross 25

Critical path: Set Associative Cache

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Tag delay
Data delay

 EEL-4713 Ann Gordon-Ross 26

Examples

°  Cacti simulation
•  Same size, block, feature size
•  Cycle times: Direct-mapped versus 2-way

-  DM: 0.654811 ns
-  2-way: 0.725646 ns

°  Simplescalar simulation
•  Hit rates: direct mapped versus 2-way

°  Impact on Average Memory Access Time?

 EEL-4713 Ann Gordon-Ross 27

Simplescalar simulation

°  Direct-mapped

°  il1.accesses 46358 # total number of accesses

°  il1.hits 42336 # total number of hits

°  dl1.accesses 13278 # total number of accesses

°  dl1.hits 12620 # total number of hits

°  2-way set associative

°  il1.accesses 46358 # total number of accesses

°  il1.hits 44368 # total number of hits

°  dl1.accesses 13278 # total number of accesses

°  dl1.hits 12870 # total number of hits

 EEL-4713 Ann Gordon-Ross 28

A Summary on Sources of Cache Misses

°  Compulsory (cold start, first reference): first access to a block
•  “Cold” fact of life: not a whole lot you can do about it

°  Conflict (collision):
•  Multiple memory locations mapped

to the same cache location
•  Solution 1: increase cache size
•  Solution 2: increase associativity

°  Capacity:
•  Cache cannot contain all blocks access by the program
•  Solution: increase cache size

°  Invalidation: other process (e.g., I/O, other CPU) updates memory

 EEL-4713 Ann Gordon-Ross 29

And yet Another Extreme Example: Fully Associative

°  Fully Associative Cache -- push the set associative idea to its limit!
•  Forget about the Cache Index
•  Compare the Cache Tags of all cache entries in parallel
•  Example: Block Size = 2 B blocks, we need N 27-bit comparators

°  By definition: Conflict Miss = 0 for a fully associative cache

:

 Cache Data
Byte 0

0 4 31

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

 Cache Tag

Byte Select
Ex: 0x01

X

X
X

X

X

 EEL-4713 Ann Gordon-Ross 30

Making room for a new block

°  Direct Mapped Cache:
•  Each memory location can only mapped to 1 cache location
•  No need to make any decision

-  Current item replaced the previous item in that cache location

°  N-way Set Associative Cache:
•  Each memory location have a choice of N cache locations

°  Fully Associative Cache:
•  Each memory location can be placed in ANY cache location

°  Cache miss in a N-way Set Associative or Fully Associative Cache:
•  Bring in new block from memory
•  Throw out a cache block to make room for the new block
•  Need to make a decision on which block to throw out!

 EEL-4713 Ann Gordon-Ross 31

Cache Block Replacement Policy

°  Random Replacement:
•  Hardware randomly selects a cache item and throws it out

°  Least Recently Used:
•  Hardware keeps track of the access history
•  Replace the entry that has not been used for the longest time

°  Example of a Simple “Pseudo” Least Recently Used Implementation:
•  Assume 64 Fully Associative Entries
•  Hardware replacement pointer points to one cache entry
•  Whenever an access is made to the entry the pointer points to:

-  Move the pointer to the next entry
•  Otherwise: do not move the pointer

:

Entry 0
Entry 1

Entry 63

Replacement
Pointer

 EEL-4713 Ann Gordon-Ross 32

*Cache Write Policy: Write Through versus Write Back

°  Cache read is much easier to handle than cache write:
•  Instruction cache is much easier to design than data cache

°  Cache write:
•  How do we keep data in the cache and memory consistent?

°  Two options (decision time again :-)
•  Write Back: write to cache only. Write the cache block to memory

 when that cache block is being replaced on a cache miss.
-  Need a “dirty” bit for each cache block
-  Greatly reduce the memory bandwidth requirement
-  Control can be complex

•  Write Through: write to cache and memory at the same time.
-  Isn’t memory too slow for this?

 EEL-4713 Ann Gordon-Ross 33

Write Buffer for Write Through

°  A Write Buffer is needed between the Cache and Memory
•  Processor: writes data into the cache and the write buffer
•  Memory controller: write contents of the buffer to memory

°  Write buffer is just a FIFO:
•  Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

°  However if:
•  Store frequency > 1 / DRAM write cycle
•  Write buffer saturation

Processor
Cache

Write Buffer

DRAM

 EEL-4713 Ann Gordon-Ross 34

Write Buffer Saturation

°  Store frequency > 1 / DRAM write cycle
•  If this condition exist for a long period of time (CPU cycle time too

quick and/or too many store instructions in a row):
-  Store buffer will overflow no matter how big you make it

°  Solution for write buffer saturation:
•  Use a write back cache
•  Install a second level (L2) cache:

Processor
Cache

Write Buffer

DRAM

Processor
Cache

Write Buffer

DRAM L2
Cache

 EEL-4713 Ann Gordon-Ross 35

Write Allocate versus Not Allocate

°  Assume: a 16-bit write to memory location 0x0 causes a miss
•  Do we read in the rest of the block (Bytes 2, 3, ... 31)?

Yes: Write Allocate (usually associated w/ write-back)
No: Write Not Allocate (write-through)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0 4 31

:

Cache Tag Example: 0x00
Ex: 0x00

0x01
Valid Bit

:
31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :

Byte 992 Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9

 EEL-4713 Ann Gordon-Ross 36

What is a Sub-block?

°  Sub-block:
•  A unit within a block that has its own valid bit
•  Example: 1 KB Direct Mapped Cache, 32-B Block, 8-B Sub-block

-  Each cache entry will have: 32/8 = 4 valid bits

°  Write miss: only the bytes in that sub-block are brought in.

0
1
2
3

:

 Cache Data

:

SB
0’

s V
 B

it

:

31

 Cache Tag SB
1’

s V
 B

it

:
SB

2’
s V

 B
it

:
SB

3’
s V

 B
it

:

Sub-block0 Sub-block1 Sub-block2 Sub-block3

: B0 B7 : B24 B31

Byte 992 Byte 1023

 EEL-4713 Ann Gordon-Ross 37

“Unified” versus “Split” caches

°  Unified: both instructions and data co-reside in the same cache

°  Split: different instruction (I) and data (D) caches

°  Typically, today’s on-chip caches closest to processor (L1) are split
•  I-cache typically has better locality and can be made smaller to be

faster (remember instruction fetch is in the critical path!)
•  Separate caches avoid data blocks replacing instruction blocks

°  L2+ caches typically unified
•  Much larger; chance of replacement small
•  Not in the critical path
•  A unified design is simpler to implement

 EEL-4713 Ann Gordon-Ross 38

Multi-level caches

°  Close to processor:
•  Level-1 cache
•  Goal: maximize hit rate while keeping cycle time as close as

possible to datapath
•  Instruction fetch in a cycle; data access in a cycle

°  Far from (or outside) processor
•  Level-2 (-3) caches
•  Goal is to maximize hit rate while keeping cost (I.e. area) within a

target design goal

 EEL-4713 Ann Gordon-Ross 39

Example: IBM Power4

Source: http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

 EEL-4713 Ann Gordon-Ross 40

Example (cont)

Source: http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

 EEL-4713 Ann Gordon-Ross 41

Power4 cache hierarchy

°  Level 1, on-chip

°  Power-4 has two processors on a chip
•  Each processor has its own L1 cache
•  Each cache is split

°  L1 Instruction Cache
•  Direct mapped, 128-byte block managed as 4 32-byte sub-blocks
•  128 KB (64 KB per processor)

°  L1 Data Cache
•  2-way, 128-byte block
•  64 KB (32 KB per processor)

°  One 32-byte read or write per cycle

 EEL-4713 Ann Gordon-Ross 42

Power4 cache hierarchy

°  Level 2, on-chip

°  Still SRAM

°  Shared across two processors

°  L2 configuration
•  unified
•  8-way, 128-byte block
•  1.5 MB

 EEL-4713 Ann Gordon-Ross 43

Power4 cache hierarchy

°  Level 3, off-chip
•  Directory tags for multiprocessing on-chip

°  Embedded DRAM

°  L3 configuration
•  8-way, 512-byte block managed as 4 128-byte sub-blocks
•  32 MB
•  shared

 EEL-4713 Ann Gordon-Ross 44

Power5 cache hierarchy

°  Improvements in size, associativity to reduce capacity/conflict misses

°  L1 I-cache: 2-way set associative

°  L1 D-cache: 4-way set associative

°  L2 unified cache: 1.92MB, 10-way associative, 13-cycle latency

°  L3 unified cache: 36MB, 12-way associative, 87-cycle latency

°  Memory: 220-cycle latency

°  http://www.realworldtech.com/page.cfm?ArticleID=RWT100404214638&p=3

 EEL-4713 Ann Gordon-Ross 45

Summary:

°  The Principle of Locality:
•  Programs access a relatively small portion of the address space at

any instant of time.
-  Temporal Locality: Locality in Time
-  Spatial Locality: Locality in Space

°  Three Major Categories of Cache Misses:
•  Compulsory Misses: cold start misses.
•  Conflict Misses: increase cache size and/or associativity.
•  Capacity Misses: increase cache size

°  Write Policy:
•  Write Through: need a write buffer
•  Write Back: control can be complex

