
Midterm 1 Study Guide

• Program performance
o What aspects affect it and how

• Stored program concept, how was this revolutionary?
• Basic stored program execution flow (lec2, slide 6)
• RISC vs. CISC

o Basic organization, how are the different?
o Advantages and disadvantages
o Where can operands come from? How is this advantageous for building RISC pipelines?

• MIPS
o Registers

 How many, how big, why are some special?
o Instruction formats

 What are they
 Why only three
 Advantages of fixed formatting/size
 Why aren’t all fields used? Advantages/disadvantages
 Implications/side effects of changing a field size (e.g., changing the number of registers to 64

but leaving the instruction length fixed at 32-bits)
o Support for procedure/function calls

 How are arguments and return values handled
 Temporary vs saved registers
 Caller vs. callee saved registers
 Return address?
 Stack frame, what is in it and why is it useful

• Frame pointer vs. stack pointer
o Purpose of load linked and store conditional
o Arithmetic vs. logical operations
o Architectural structure

 Advantages/disadvantages for speculative operations (e.g., fetching registers while the
instruction is being decoded)

o Instruction phases:
 Instruction fetch, register fetch/instruction decode, execution/address calculation, memory

access, register write back (e.g., Lec 6, slide 8)
 What happens in each phase for each instruction type? High-level operation details based on

the instruction being executed. I would not ask you to define signal values for datapath
components

• Structural designs
o Fast and big vs. small and slow

 Implications
 Advantages/disadvantages
 Ex. Ripple carry vs. carry look ahead adders
 How can this concept be applied to other structures

o Single cycle (one long cycle) vs multi-cycle (multiple shorter cycles) designs for the same overall
operation

 Advantages/disadvantages
 Multi-cycle vs. multiple-cycle delay path
 Understand implications on the critical path for single vs. multi-cycle operation.
 How does the clock cycle change? How does overall execution time of 1 instruction change?

(not pipelined yet)
 Maintaining timing constraints: different between single cycle violations and multi-cycle

violations
• Processor design (note: simple designs for a small set of instructions)

o Define datapath components based on a set of instructions

o Design an ALU based on a set of operations
o Define a controller and datapath based on a set of instructions
o Question 1 on the sample midterm is VERY IMPORTANT!

• Multipliers/Dividers
o Iterative improvement purposes (what was being reduced)

 Reasons why registers could be removed/combined, ALUs could be reduced
o Know the basic progression of each version, but no details. I would remind you in the question of any

details you needed to know
o Work through an example for multiple/divide version 3

 Show register values for each iteration
o Booth’s algorithm for multiply

 What is the purpose of this algorithm
 Basic idea of how it works
 Do not need to work through an example

• Floating point
o Convert a decimal number to binary single-precision floating point notation
o Bias – what is it? What does it facilitate?
o Single-precision vs. double precision

 Ranges
 Register layout

o Exceptions
 Underflow, overflow
 Infinity, NaN

o Decimal representation operations
 Work through addition/subtract multiple/divide with and without round and guard bits

o Purpose of special bits
 Round, guard, sticky

o Why aren’t some FP operations associative? Give example
o Challenges wrt to FP operations (e.g., precision, accumulated errors)

• Performance
o Calculate CPI based on instruction mix
o Calculate CPI speedup based on architectural changes
o Compare CPIs of processors based on instruction mixes
o Chart on slide 16

