
Midterm 2 Study Guide

• Multipliers/Dividers
o Iterative improvement purposes (what was being reduced)

 Reasons why registers could be removed/combined, ALUs could be reduced
o Know the basic progression of each version, but no details. I would remind you in the question of any

details you needed to know
o Work through an example for multiple/divide version 3

 Show register values for each iteration
o Booth’s algorithm for multiply

 What is the purpose of this algorithm
 Basic idea of how it works
 Do not need to work through an example

• Floating point
o Convert a decimal number to binary single-precision floating point notation
o Bias – what is it? What does it facilitate?
o Single-precision vs. double precision

 Ranges
 Register layout

o Exceptions
 Underflow, overflow
 Infinity, NaN

o Decimal representation operations
 Work through addition/subtract multiple/divide with and without round and guard bits

o Purpose of special bits
 Round, guard, sticky

o Why aren’t some FP operations associative? Give example
o Challenges wrt to FP operations (e.g., precision, accumulated errors)

• Performance
o Calculate CPI based on instruction mix
o Calculate CPI speedup based on architectural changes
o Compare CPIs of processors based on instruction mixes
o Chart on slide 16

• Pipelining
o Basic concept and goal
o Key points on Lec10-slide 7
o What makes pipelining hard?
o Pipeline registers: purpose, overhead incurred, etc
o Latency vs. bandwidth

 How does pipelining affect these wrt to a single instruction?
o Structural, control and data hazards

 What are they?
 Do they exist in the MIPS 5-stage pipeline as you have implemented? Why/why not?
 If a hazard exists (independent of the architecture), what steps or measures can be taken to

remove the hazard?
 How do hazards affect the flow of instructions?

o Why is it beneficial for all MIPS instructions to take all 5 stages, even if some stages are not used by all
instructions?

o Data dependencies vs. data hazard
o Data forwarding

 What is it?
 How does it work?
 What are the benefits?
 How does it ensure correct data flow?
 What data hazards cannot be removed by forwarding? What must be done?

o Code evaluation:

 Given some assembly code, identify the data dependencies and data hazards
o Software scheduling:

 What is it?
 Where is it done?
 Why does it still ensure correct data flow?
 Given code with load-use hazards, reorder code to remove hazards – See Lec11-slide 19-21

o Branch hazards
 Why are branches so bad for performance?
 Describe the optimization that moves the branch determination from the 4th cycle to the 2nd

cycle in your MIPS 5-stage pipeline.
 What is a branch delay slot? How does it improve performance?
 Branch prediction:

• What is it?
• How does it improve performance?

o Other data hazards: RAW, WAW, and WAR
 Identify them in assembly code or give assembly code that exhibits these hazards

o Calculate speedup wrt pipelining
 What is the ideal speedup?
 What hinders achieving the ideal speedup?
 Calculate pipeline speedup (see Lec11-slide 45) and compare different systems

• Memory hierarchies
o Benefits of a hierarchical memory approach wrt to performance
o Spatial vs temporal locality and how memory hierarchies exploit both
o Terminology Lec 12-slide 8
o Given an address and a cache configuration, determine the number of bits required for the block offset,

index, and tag
o Tradeoffs (small vs. large):

 Total size
 Line (block) size
 Associativity

o Calculations
 Average memory access time given hit/miss rates and penalties
 Compare different systems

o Miss penalty components (bandwidth vs. latency)
o 3 C’s for cache misses (conflict, capacity, cold)

 Mechanisms to reduce each type
o What happens on a miss:

 How is the new location determined wrt to associativity?
 Block replacement policies

• Random, LRU, pseudo-random
o Write policies: Write back vs write through

 How do they operate?
 Tradoffs and implications
 What is a write buffer? What does it improve? How does it work?

o Write allocate vs. write no-allocate
 How do they operate?
 Tradoffs and implications

o Purpose of dirty and valid bits
• I/O

o Magnetic disks
 Basic layout (sectors, tracks, head, arm, etc)
 Process to access a bit of data
 Disk access time components

o Queuing theory
 Producer server model
 Throughput vs response time

• How do you maximize/minimize?
• Why do they compete?

 What are the assumptions we have made to make it simpler
 Terminology

• Arrival rate
• Time in system
• Time in queue
• Time in server
• Service rate
• Total system latency = time in queue + time in server
• Server utilization

 Calculations
• Server utilization (Lec 13-slide 26)
• Time is queue (Lec 13-slide 28)
• Compare time in system (Lec 13-slides 29-30)

o Reliability vs availability
 Define and compare
 How can both be improved?
 MTTF
 MTTR
 Calculate availability wrt to MTTF and MTTR
 Calculate system reliability based on component reliability

• How does redundancy help?
o Disk arrays

 Basic principle in the beginning, why did they fall out of usage, and why are the back now
 Effects on reliability and availability
 RAID
 What is the concept of RAID? Why is it important? Why is it useful?
 Give any possible advantages/disadvantages to using RAID X. If I were to ask you this

question, I would say what RAID X does to remind you
 How do different RAID methods perform for little and big writes?
 Know the differences between the following RAID models. The table on page 363 might be

helpful
• RAID 1 - mirrored
• RAID 4 – parity-based with one parity disk
• RAID 5 – parity-based with the parity spread across all disks
• RAID 6 – row and diagonal parity

 How can RAID 6 recover from multiple disk failures? Work through a recovery problem like
in the slides

o Error vs fault vs failure
 What are they, why are they different?
 How can you prevent one from becoming another.

• Virtual Memory (VM)
o What benefits does VM provide?
o How is VM similar to caching? What similarities do they share?
o How does VM abstract the main vs. secondary memory structure?
o Page tables

 What do they store? (know all fields’ purposes)
 How are located?
 Where are they stored?
 How are the indexed?

o Given an address and a page size, determine the page offset bits and the virtual tag
o Page faults

 What is it?
 What handles page faults and why?

 Page replacement policies
 Optimal page sizes

o Access rights
 What are they?
 Purpose?
 Protection violation

o TLBs
 Purpose
 Organization
 Methods to reduce translation time (overlap with cache access, virtually indexed, physically

tagged caches)
 Problems

o Caches and virtual addresses
 Aliasing problem with virtually indexed, virtually tagged caches

• Most important questions in the 2006 sample test is question 1 and question 4

