QUARTUS AND MODELSIM

QUICK START

David Tietz (Modified by H. Lam 2012 Update by Shaon Yousuf 2013)

Department of Electrical and Computer Engineering

Contents

- 1. Installation
- 2. Create a Quartus II Project
- 3. Adding Design Files
- 4. Setting Up the EDA Simulator Execution Path
- 5. Compiling the Design
- 6. Creating a Project in ModelSim-Altera
- 7. Understanding a Testbench File
- 8. Compiling a Project in ModelSim-Altera
- 9. Running a Functional Simulation
- 10. Running a Timing Simulation
- 11. Results

Installation

1. Download and install the newest version of Quartus II Web Edition Software and ModelSim-Altera Starter Edition Software:

http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

• Be sure the checkbox for Quartus II Programmer and SignalTap II is checked.

Create a Quartus II Project

Once you start Quartus II web edition. You must first create a new project by selection New Project Wizard from the welcome screen:

- 1. At the Introduction page, click next.
- 2. Start by creating a new directory and project name, shown in **Figure 1**. Save it somewhere you can access it easily (e.g., .../Documents/EEL4712/SimpleLogic). Then click next.

What is the working director	y for this project?			
C:/Users/hlam/Documents	/EEL4712/SimpleLogi	ic		
What is the name of this p	oject?			
SimpleLogid				
match the entity name in t SimpleLogic	ie design file.			

- 3. In the next page, you would normally add design files to your project, if this is your first lab, you don't have any to import, so just click next.
- 4. In the family and device setting step, select 'Auto device selected by the Fitter' or select the correct device we will be using for EEL 4712, shown in **Figure 2** then click next.

Device family				Show in 'Available devices' list						
Eamily: Cyclone II				Package:	Package: Any			•	-	
Devices: All				Pin <u>c</u> ount: Any		Any			ลี	
				Speed gra	ade:	Any				
Other: n/a vailable devices										
Name	Core Voltage	LEs	User I/Os	Memo	ry Bits		Embedded multiplier 9-bit elements	PLL	al Cl	-
EP2C5AF256A7	1.2V	4608	158	119808	2	26		2	8	
P2C5AF256I8		4608	158	119808		26		2	8	
P2C5AT144A7	1.2V	4608	89	119808		26		2	8	
P2C5F256C6	1.2V	4608	158	119808		26		2	8	
P2C5F256C7	1.2V	4608	158	119808		26		2	8	
P2C5F256C8	1.2V	4608	158	119808		26		2	8	
P2C5F256I8	1.2V	4608	158	119808		26		2	8	
				III					•	
4	vice	1000							4	

5. In EDA Tool Settings, select the following (i.e., ModelSim-Altera) from the pull down menus, shown in **Table 1**, and click next:

Tool Type	Tool Name
Design Entry/Synthesis	<none></none>
Simulation	ModelSim-Altera
Timing Analysis	<none></none>
Format Verification	<none></none>

Table 1

6. On the summary page, click finish.

Adding Design Files

1. (a) From the file menu, select new. From the Menu, select the type of design file you would like to create (in this case VHDL), then click OK, as shown in **Figure 3**.

Type in the VHDL code from SimpleLogic.vhd

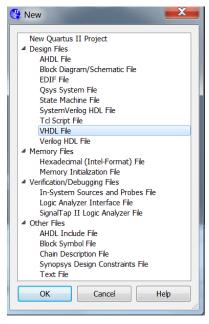


Figure 3

1. (b) Alternatively, you can add the file (SimpleLogic.vhd) to the project (without having to type it in:

Click Project \rightarrow Add/Remove File from Project ... Browse to the directory and select SimpleLogic.vhd Click Add and then **OK**

2. If necessary, confirm that the design file was added to the current project, by click from the top menu: Project \rightarrow Add Current File to Project.

Setting Up the EDA Simulator Execution Path

To run an EDA simulator (e.g. Modelsim-Altera) automatically from the Quartus II software using the NativeLink feature, specify the path to your simulation tool by performing the following steps:

- 1. On the Tools menu, click **Options**. The **Options** dialog box appears.
- 2. In the Category list, under the General category, select EDA Tool Options.
- 3. The **Options** window should look like Figure 4. In the **Modelsim-Altera** entry, the location of executable should be something like "C:\altera\13.0sp1\modelsim_ase\win32aloem".
- 4. If not, then browse to the directory containing the executable of the Modelsim-Altera simulator. (Again, path should be like "C:\altera\13.0sp1\modelsim_ase\win32aloem".)
- 5. Click **OK**.

Compiling the Design

Once you have all the design files you need in place, you are ready to compile:

- 1. On the top menu, select: Processing \rightarrow Start Compilation.
- 2. The message window below will show compilation status, and you will also be shown a compilation report window. If the design compiles successfully, you can close out the report.

	_					
General EDA Tool Options	EDA Tool Options					
Fonts	Specify the location of the tool executable for each third-party EDA tool:					
Headers & Footers Settings	EDA Tool	Location of Executable				
 Internet Connectivity Notifications 	LeonardoSpectrum					
Libraries	Precision Synthesis	T				
License Setup Preferred Text Editor	Synplify					
Processing	Synplify Pro	2				
Tooltip Settings	Active-HDL	2				
Messages Colors	Riviera-PRO					
Fonts	ModelSim					
Text Editor Colors	QuestaSim	h				
Fonts	ModelSim-Altera	C:\altera\13.0sp1\modelsim_ase\win32aloem				
Autocomplete Text	NCSim	7 				

Figure 4

Compilation in ModelSim-Altera

Now that you have created and compiled the project in Quartus II. You are ready to use ModelSim to perform the testbench simulations, but first you need to compile your design files in ModelSim

- 1. Invoke ModelSim from Quartus: Tools \rightarrow Run Simulation Tool \rightarrow RTL Simulation
- 2. On ModelSim open the compile window by clicking Compile \rightarrow Compile
- 3. Compile the following files:
 - a. SimpleLogic.vho (should be in the simulation/modelsim directory)
 - b. SimpleLogic_tb.vhd (Provided to you in Lab1vhdlFiles.zip and placed by you in some directory)
- 4. Click **Done** and open the library view if it's not already open (by selecting View \rightarrow Library) and verify the red circled portions as shown in Figure 5 are there.
- 5. If there are errors, try compiling again because an incorrect compilation order can cause this problem. If there are errors in the testbench, you likely didn't name your I/O correctly in your Quartus design file (SimpleLogic.vhd).

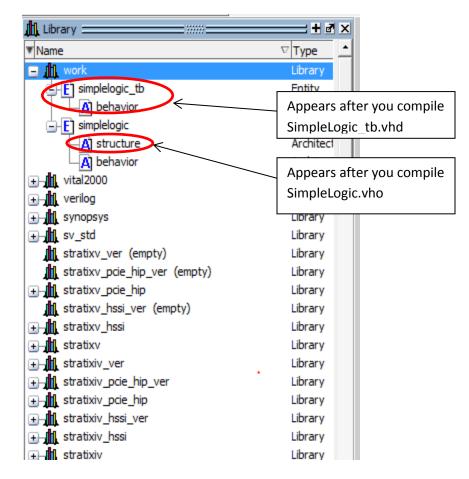
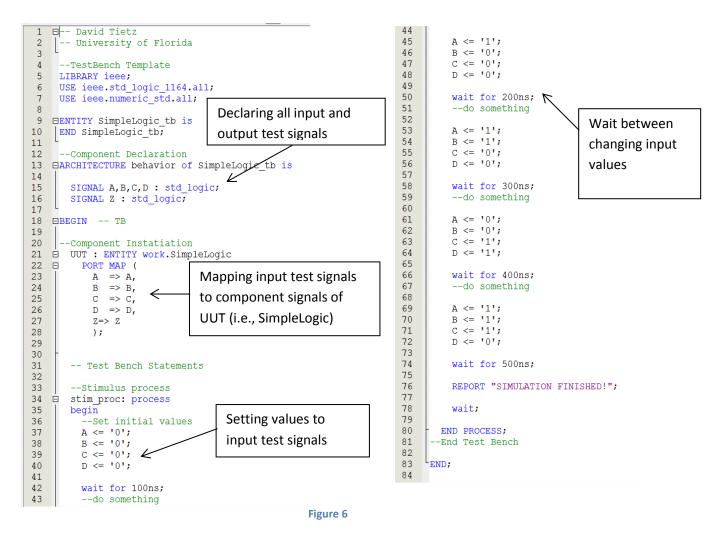



Figure 5

Understanding a Testbench File

Testbench files are used to test your design files as against a set of input test signals. Input test signals are generated and applied to the unit under test (UUT) within the test bench. **Figure 6** is a testbench file we used for this tutorial.

For future designs, you will need to make or modify the above testbench file to fit the needs of the design you are trying to simulate. You will need to declare the test signals you will use, port map them to correct component signals from the Quartus design, and then setup the actual signal transitions.

Running a Functional Simulation

In a functional simulation, you will simulate your design based on a functional stand point. In other words, delays through the system will not be taken into account. To run a functional simulation:

- 1. Click Simulate \rightarrow Start Simulation.
- 2. On the Design tab select work \rightarrow SimpleLogic_tb, which is the testbench. Click OK.
- 3. Two simulation windows should load: **Object** window and **Wave** window. If not, you can always load them yourself by clicking the **View** menu and checking the appropriate window.
- 4. Generally you want to display all the test signals in the Wave window. To do so, click in the **Objects** window
 - Click Add -> To Wave -> Signals in Region

Alternatively, you can display only selected signals in the Wave window:

- In the Objects window, select the signals you would like to monitor and drag them into the Wave window (or copy and paste).
- 5. Click Simulate \rightarrow Run \rightarrow Run -All.
- 6. You can use 'Ctrl +' and 'Ctrl -' to zoom in and out. **Figure 7** shows the results of the simulation.

Figure 7

Running a Timing Simulation

In a timing simulation, you will simulate your design based on a timing stand point. In other words, delays through the system will be included and will affect the performance of your design. To run a timing simulation:

- 1. Make sure the simulation currently running is complete by clicking Simulation→End Simulation.
- 2. Quartus creates an .sdo file to annotate simulation with actual propagation delays. To include this in your ModelSim project:
 - a. Select the SDF tab (on the dialog box that comes up after Start Simulation).
 - b. Add the SimpleLogic.sdo file that is in the quartus_project/simulation/modelsim directory.
 - c. This should be same directory as the .vho file that you previously added.
 - d. In the "Apply to Region" text box, make sure to type /**UUT** (this is the same label used in the testbench file for that region of component instantiation).
- 3. On the Design tab select work->SimpleLogic_tb, which is the testbench. Click OK. Three simulation screens will load.
- 4. In the Objects window, select the signals you would like to monitor and drag them into the Wave view.
- 5. Click Simulate \rightarrow Run \rightarrow Run -All.
- 6. **Figure 8** shows the results of the timing simulation.

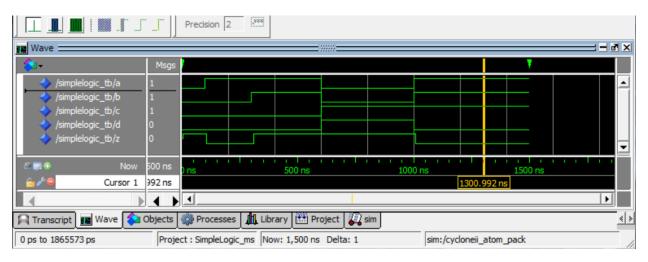


Figure 8