Outline & Announcements

o

Introduction to Hazards

EEL-4713C . .
Computer Architecture Forwarding
Pipelined Processor - Hazards > 1 cycle Load Delay
° 1 cycle Branch Delay
° What makes pipelining hard
EEL4713C Ann Gordon-Ross .1 EEL4713C Ann Gordon-Ross .2
Pipelining — dealing with hazards Single Memory is a Structural Hazard
° Limits to pipelining: prevent next instruction from executing Time (clock cycles)

during its designated clock cycle

: HW cannot support this combination of
instructions
: instruction depends on result of prior instruction still / Reg)
in the pipeline n |Load IJ
: pipelining of branches & other instructions that S g

change the PC t |{Instr 1 Memr| Reg A

r.
° Common solution is to the pipeline until the hazard is resolved, .
inserting one or more ”in the pipeline o |Instr 2
r
d :
. |Instr3 i{
r TR
Instr 4 ®

EEL4713C Ann Gordon-Ross .3 EEL4713C Ann Gordon-Ross .4

Option 1: Stall to resolve Memory Structural Hazard Option 2: Duplicate to Resolve Structural Hazard
* Separate Instruction Cache (Im) & Data Cache (Dm)

Time (clock cycles) Time (clock cycles)
I{l Load Reg ,{] Load El‘ Reg Reg
z Instr 1 B 1 e E Instr1 ™ [e
o |Instr 2 Memp Ree o |Instr 2 [t i{rer W
r r
¢ | Instr 3(stall) @E e ¢ | Instr 3 [t e .E
" instr 4 [Men] T iee| IE' Reg " instr 4 [J{res
EEL4713C Ann Gordon-Ross .5 EEL4713C Ann Gordon-Ross .6

Data Hazard on r1 Data Hazard on r1:

* Dependencies backwards in time are hazards

Time (clock cycles)
IF ID/IRF X MEyI WB Recall, iread/write at

add r1 12,3 |add r1,r2,3 [1m{oa] o [lbly iSRG

n N through reg file
sub r4, r1,r3 : |subraries [HE Sy e

r.
and r6, r1 ,r7 and r6,r1,r7 B a I?‘" iﬂ

(0]
or r8,r1,r9 g |or r8,r1,r9 = H é}.{

e
xor r10, r1 ,r111 r |xorr10,r1,r1 IE'

EEL4713C Ann Gordon-Ross .7 EEL4713C Ann Gordon-Ross .8

Option1: HW Stalls to Resolve Data Hazard

Time (clock cycles)
IF ID/RF X MEyI WB
, |add r1,r2,r3 E}
{lsubrg, 18 [b] o fo
; and r6,r1,r7 [ree
. lor r8,r1,r9 —
: for ot i
" Yxor r10,r1,r11 [tm [res]

EEL4713C Ann Gordon-Ross .9

Option 1: HW stalls pipeline

« HW doesn’ t change PC => keeps fetching same instruction
& sets control signals to benign values (0)

Time (clock cycles)
IF ID/RF NEX j 2 !

. (add 102,63 [] Elfon (Riels
: o A ARG
t stall m u [z U, e u E 12 e
r.

Sta" Im —bubble bubblev
o
, i s o
d | stall
e
, |subré4,r1,r3

and r6,r1,r7

EEL4713C Ann Gordon-Ross .11

But recall how the control logic works

° The Main Control generates the control signals during Reg/Dec
+ Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
» Control signals for Mem (MemWr Branch) are used 2 cycles later

» Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

1 1 1 1
| i Reg/Dec | i Exec | i Mem 1 i Wr
1 1 | [
ey B (& Exop ey ey
ALUSrc ALUSrc -
= |aLuop [=| ALuop < §
é Main RegDst 5 RegDst e >
Control ~ = =
e = = =
K MemWr 3 MemWr 2 MemWr E
@ Branch @ Branch %z | Branch s,
g g g z
MemtoReg MemtoReg MemtoReg = | MemtoReg
RegWr RegWr RegWr RegWr

EEL4713C Ann Gordon-Ross .10

Option 2: SW inserts independent instructions

S ~0 3 —

=0 Q>0

* Worst case inserts NOP instructions

Time (clock cycles)

IF ID/RF X
add r1,r2,r3 @

= e

nop
nop

nop

sub r4,r1,r3
and r6,r1,r7

EEL4713C Ann Gordon-Ross .12

MEM_WB

o]

e

fia

R
i

tr
=

= H].
EIJ

=
£]

N

=
o
oQ

H

Option 3 Insight: Data is available! HW Change for “Forwarding” (Bypassing):

* Pipeline registers already contain needed data + Increase multiplexers to add paths from pipeline registers

Key enabler: Reg file written at .
beginning of cycle, read at end

Time (clock cycles)
IF IDIRF- X MEM WB ID/EX EX/MEM MEM/WE

, |add r1,r2,r3 [{{xs] |{ om ol
n | Zero?
° |subr4,r1,r3 ElGE | |(e [{Res] B
r & Re e Data

and r6,r1,r7 B[El c—r F |
O x
¢ lor 18,119 CNiC IS
e

[: R
r |xor r10,r1,r11 [e ?’
7]

EEL4713C Ann Gordon-Ross .13 EEL4713C Ann Gordon-Ross .14

Load delays Forwarding reduces Data Hazard to 1 cycle:

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Clock

Time (clock cycles)

10: Loadl Ifetch IReg/Decl Exec I Mem I Wr_

Plusll Ifetch IReg/Decl Exec l' Mem

ID/RF X MEM WB

|
[wel =
Wr [;
; - twr1, 0(r2) [m J{refl Eliom jrffs
Pluszl Ifetch IReg/Decl Exec l Mem I Wr I
[subrarire [HRE B e
Plus 4 l Ifetch l‘leg/Decl Exec I Mem I Wr I] iy >‘ Re
v and r6,r1,r7 B e cgr
¢ Although Load is fetched during Cycle 1:
L W

Plus3| Ifetch IReg/Deq Exec I Mem I Wr I

SN ~0 3> —

7] e

» Data loaded from memory in cycle 4

» The data is NOT written into the Reg File until Cycle 5

* We cannot read this value from the Reg File until Cycle 6
+ 2-instruction delay before the load take effect

or r8,r1,r9

=0 Q>0

EEL4713C Ann Gordon-Ross .15 EEL4713C Ann Gordon-Ross .16

Option1: HW Stalls to Resolve Data Hazard

*Check for hazard & stalls

Time (clock cycles)

EEL4713C Ann Gordon-Ross .17

lw r1, 0(r2) [m |

/
n
T | stall
r.
subr4,r1,r3
(0]
s |and ré,r1,r7
e
" or r8,r1,r9

Im }= bubble

ID/RE NEX
e]

El_l.

*Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f
assuming a, b, ¢, d ,e, and f
in memory.
Slow code:
Lw Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
Lw Rf.f
SUB Rd,Re,Rf
sSw d,Rd

EEL4713C Ann Gordon-Ross .19

KK
o
L=l

Option 2: SW inserts independent instructions

* Worst case inserts NOP instructions

Time (clock cycles)

EEL4713C Ann Gordon-Ross .18

lw r1, 0(r2) [mf

I
n
7 | nop
r.
subr4,r1,r3
(0]
s |and ré,r1,r7
" or r8,r1,r9

ID/RF

fta

X MEM WB
y Dm 2

Im |—E|Reg[:‘

EIJ

|

o

bl
=l

ﬂ
o
L=l

Reg

*Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f
assuming a, b, ¢, d ,e, and f
in memory.
Slow code:
Lw Rb,b
LW~ Ree stall
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
Lw Rf.f
SUB Rd,Re,Rf stall
sSw d,Rd

EEL4713C Ann Gordon-Ross .20

Software Scheduling to Avoid Load Hazards

Try producing fast code for

a=b+c;
d=e-f;
assuming a, b, ¢, d ,e, and f
in memory.
Slow code:
LW Rbb Fast code:
Lw Rb,b
LW Rc,c LW Re.c
ADD Ra,Rb,Rc LW Re.e
SW aRa ADD Ra,Rb,Rc
LW Re,e LW Rf.f
LW Rf,f SW a,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf
sSwW d,Rd Sw d,Rd

EEL4713C Ann Gordon-Ross .21

Branch delay
! Cycle4iCycle5 | Cycle 6} Cycle7 | Cycle 8 | Cycle 9 | Cycle 10} Cycle 11

& | Mo

12: Beql Ifetch IReg/Decl Exec I Mem,l Wr I
(target is 1000) : \)
16: R-typnl Ifetch I.Beg/Decl Exec I Mem I Wr I

20: R-typel‘lfetch IReg/De(l Exec I Mem I ‘Wr I

24: R-typel Ifetch 5 /Decl Exec I Meml Wr I

1000: Target of Br \yvlfetch IReg/Decl Exec I Mem I Wr I

° Although Beq is fetched during Cycle 4:
» Target address is NOT written into the PC until the end of Cycle 7
» Branch’s target is NOT fetched until Cycle 8
« 3-instruction delay before the branch take effect

EEL4713C Ann Gordon-Ross .23

o

o

o

o

Compiler Avoiding Load Stalls:

B scheduled B unscheduled

gcc

spice
65%

tex 25%

0% 20% 40% 60%

% loads stalling pipeline

EEL4713C Ann Gordon-Ross .22

Branch Stall Impact

If CPI =1, 30% branch, Stall 3 cycles => new CPI =1.9!

2 part solution:
« Determine branch taken or not sooner, AND
« Compute taken branch address earlier

MIPS branch tests =0or!=0

Solution Option 1:
* Move Zero test to ID/RF stage
« Adder to calculate new PC in ID/RF stage
1 clock cycle penalty for branch vs. 3

EEL4713C Ann Gordon-Ross .24

80%

Option 1: move HW forward to reduce branch delay Option 2: Define Branch as Delayed

Instruction | Instr. Decode Execute | Memory Write o ; ; :
; i ; ; A h th f th
Fetch Reg. Fetch Addr. Calc Access Back o g;:n ::?gt?t%t:)?:es after branch that need to execute independent of the
Next PC) : * Worst case, SW inserts NOP into branch delay

° Where to get instructions to fill branch delay slot?
» Before branch instruction
* From the target address: only valuable when branch
» From fall through: only valuable when don’t branch

° Compiler effectiveness for single branch delay slot:
« Profiling: about 50% of slots usefully filled

EEL4713C Ann Gordon-Ross .25 25 EEL4713C Ann Gordon-Ross .26

Example Branch prediction

° Add r1,r2,r3 ° Aggressive pipelined processors:

. * Place branch resolution as early as possible in pipeline
° Beq r2, r4, target 7 Branch not depending on add, so swa
q g P g P * Beyond that, use branch prediction and speculation

° Next
° Simple branch prediction:
* Assume branch not taken, fetch from fall-through
« If branch is taken, flush pipeline
° Target: x ° More complex techniques are often used:

 Predict taken or not taken based on learning of past behavior of a
branch

- Keep counters indexed by PC on a “branch predictor table”
» Predict target address before it is calculated
- Branch target table, also indexed by PC

EEL4713C Ann Gordon-Ross .27 EEL4713C Ann Gordon-Ross .28

Branch prediction

° Speculative execution:
* Trust, but verify

« Assume branch prediction is correct, have mechanisms to detect
otherwise and flush pipeline before any damage to architectural
state is done (i.e. registers or memory get corrupted)

° Example: use the PC to look up a branch predictor table and a branch
target table

« If there is a matching entry for the PC, chances are it is a branch,
and chances are the direction (taken/not taken) and target match
the prediction

* Go ahead and set the next PC to be the predicted one

« Later on in the pipeline, once the branch is resolved (is it a branch?
Condition satisfied? What is the target?), either let the instructions
that follow it commit, or discard them

EEL4713C Ann Gordon-Ross .29

5-stage pipeline revisited
Hazard
detection

110 RughanRs

Register
Comparison
Forwarding logic
muxes
EEL4713C Ann Gordon-Ross .31

Summary — 5-stage pipeline revisited

° Pipeline registers

- Data and control signals propagate every cycle

° Hazard detection logic and forwarding for data hazards
* 1 cycle load delay slot, R-type has zero delay

° Move branch resolution to ID stage to reduce delay to 1 cycle

EEL4713C Ann Gordon-Ross .30

5-stage pipeline revisited

Hazard detection:
Load? Rt(load) = Rs,Rt(next)?
Yes: stall PC, IF/ID, insert bubble

OVEX
= MEMWB
1R
u
Dutn ',
memory
1F10 Rueghster Ry (L 4 ¥_.
T -
= IDEX Aaguiats = *-I
Register
i Comparison
Forwarding logic

muxes
EEL4713C Ann Gordon-Ross .32

5-stage pipeline revisited ID/EX.MemRead==1 and
((ID/EX.Rt==IF/ID.Rs) or

— (ID/EX.Rt==IF/ID.Rt))
“Ty Clear control
£ er&/Signals for EX, M, WB
: ST

J

(%xcm
]

S

"'“'7" I

L] 1IN0 Ragttarie
Disable writing
Fr'g’ iIsFt/;? / Register
9 E gi Comparison
EEL4713C Ann Gordon-Ross .33
5-stage pipeline revisited Hazard detection:

Is it a branch? Taken?
Yes: flush IF/ID register (force nop)

ot >
‘"’(y
o
o
"

| EX
0 e
u | ¥ 1% MEMWE
x
MolN= =5

e wn

J

(%xc®
]

S

-~ -
Duin
memary
—

0 Regtataiie
[

Register
Comparison

Forwarding logic

muxes
EEL4713C Ann Gordon-Ross .35

5-stage pipeline revisited
Hazard

:.:y g detection
£ 0E

! X
@ : 1—*‘"‘ MEMWB
5D .t 15 L L
Registers ™
| i T H Ha
|:J' instruction | | | E| s :
- L | o)
IO Ragttee —
R
WB=1? Destination reg
Forwarding (rt for loads, rd otherwise)
muxes matches rs or rt of next inst?
EEL4713C Ann Gordon-Ross .34 Matches second next?

Examples of other hazards

° “Read-after-write” (RAW)
* Load followed by ALU instruction using same register
* Register read must occur after load writes it

° “Write-after-write” (WAW)
« div.d $f0,$f2,$f4
+ add.d $f0,$f6,$f8
 add.d’ s write must occue after div.d’s

° “Write-after-read” (WAR)
« div.d $f0,$f2,$f4
- add.d $f2,$f4,$f6
- add.d’ s write must occur after div.d’ s read

EEL4713C Ann Gordon-Ross .36

When is pipelining hard? When is pipelining hard?

: 5 instructions executing in 5 stage pipeline

* How to stop the pipeline?
P PP ° Address modes: Autoincrement causes register change during

* Restart? instruction execution
* Who caused the interrupt? » Now worry about write hazards since write no longer last stage
Stage Problem interi " upts oceurring - - Write After Read (WAR): Write occurs before independent read
IF Page fa_ult on |nstruct|on_ fetcr_'l;lm!sallgned memory - Write After Write (WAW): Writes occur in wrong order, leaving
acces.s, memtlary-protectlon violation wrong result in registers
ID Undefined or illegal opcode - (Previous data hazard called RAW, for Read After Write)
EX Arithmetic interrupt
MEM Page fault on data fetch; misaligned memory ° Memory-memory Move instructions
access; memory-protection violation « Multiple page faults
EEL4713C Ann Gordon-Ross .37 EEL4713C Ann Gordon-Ross .38
When is pipelining hard? First Generation RISC Pipelines (“Scalar”)
: long execution time
° Also, may pipeline FP execution unit so that can initiate new ° All instructions follow same pipeline order (“static schedule”).
instructions without waiting for full latency o . L
P Instruct Lat MIPS R4000 Register write in last stage
nstruction atency () — Avoid WAW hazards
Add, Subtract 4 . . .
Multiply 8 ° All register reads performed in first stage after issue.
Divide 36) '\;Avmd WAR ha.zards .
Square root 112 emory access in stage
Negate 2 — Avoid all memory hazards
Absolute value 2 ° Control hazards resolved by delayed branch (with fast path)
FP compare 3 ° RAW hazards resolved by bypass, except on load results
° Divide, Square Root take -10X to -30X longer than Add which are resolved by delayed load.
+ Exceptions?
« Adds WAR and WAW hazards since pipelines are no longer Substantial pipelining with very little cost or complexity.

same length Machine organization is (slightly) exposed!

EEL4713C Ann Gordon-Ross .39 EEL4713C Ann Gordon-Ross .40

Examples

° Alpha 21064 (92):

 up to two instructions per cycle
* One floating-point, one integer (in-order)

« 7 stages (int), 10 stages (FP)
° MIPS R3000 (88)

« One (integer) instruction per cycle

» 5 stages (int)

° Sparc Micro (91)
« 5 stages

EEL4713C Ann Gordon-Ross .41

Examples

° Alpha 21264 (98)
 up to 4 instructions per cycle
« 7 stages (int), 10 stages (FP)

° MIPS R10000 (96)
* 4 instruction per cycle
« 5 stages (int), 10 stages (FP)

° Sparc Ultra Il (96)
» 9 stages (int, FP)

4 instructions issued per cycle

EEL4713C Ann Gordon-Ross .43

Today’ s RISC Pipelines (“Superscalar”)

° Instructions can be issued out of order in pipeline (“dynamic schedule”)

— Must handle WAW, WAR hazards in addition to RAW
— Tomasulo, Scoreboarding techniques
° Multiple instructions issued in a single cycle
« Instructions are “queued up” for execution in a reorder buffer
» CPleffective < 1!
° Control hazards resolved (speculatively) by predicting branches
° Single-cycle memory access in best case (cache hit)
Tens-hundreds if need to go to main memory

° Aggressive pipelining with rapidly increasing cost/complexity.

° Diminishing returns as more resources are added

EEL4713C Ann Gordon-Ross .42

NetBurst

o

Successor to Pentium Pro
* 3 uops per cycle, out-of-order

o

Key differences
Deeper pipeline for fast clocks: 20 stages
+ Seven integer execution units vs. 5
+ Can overlap instructions from two programs in the pipeline
- “Hyper-threading”; simultaneous multi-threading
- To software, looks as if it has 2 processors

EEL4713C Ann Gordon-Ross .44

Review: Summary of Pipelining Basics

° Speed Up proportional to pipeline depth; if ideal CPl is 1, then:

Pipeline depth . Clock cycle unpipeline
stall cycles per instructionClock cycle pipelined

SpeedlJp_1+PipeIine
° Hazards limit performance on computers:
« structural: need more HW resources
 data: need forwarding, compiler scheduling
« control: early evaluation & PC, delayed branch, prediction
° Increasing length of pipe increases impact of hazards since pipelining
helps instruction bandwidth, not latency
° Compilers key to reducing cost of data and control hazards
* load delay slots
» branch delay slots

° Exceptions, Instruction Set, FP makes pipelining harder

EEL4713C Ann Gordon-Ross .45

