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EEL-4713 
Computer Architecture 

Virtual Memory 
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Outline 

°  Recap of Memory Hierarchy   

°  Virtual Memory 

°  Page Tables and TLB  

°  Protection  
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Memory addressing - physical 

°  So far we considered addresses of loads/stores go directly to caches/memory 
•  As in your project 

°  This makes life complicated if a computer is multi-processed/multi-user 
•  How do you assign addresses within a program so that you know other 

users/programs will not conflict with them? 
Program A:    Program B: 

 store 0x100,1        store 0x100,5  
         load R1,0x100 
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Virtual Memory? 

Provides illusion of very large memory 
 – sum of the memory of many jobs greater than physical memory 
 – address space of each job larger than physical memory 
 
Allows available (fast and expensive) physical memory to be  
 efficiently utilized 
 
Simplifies memory management and programming 
 
Exploits memory hierarchy to keep average access time low. 
 
 
Involves at least two storage levels: main and secondary 

Main (DRAM): nanoseconds, M/GBytes 
Secondary (HD): miliseconds, G/TBytes 

 
Virtual Address --  address used by the programmer 
 
Virtual Address Space --  collection of such addresses 
 
Memory Address --  address of word in physical memory 
      also known as “physical address” or “real address” 
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Memory addressing - virtual 

Program A:    Program B: 
 store 0x100,1        store 0x100,5  
         load R1,0x100 

Translation A:    Translation B: 
 0x100 -> 0x40000100   0x100 -> 0x50000100  
          

Use software and hardware to guarantee no conflicts 
Operating system: keep software translation tables 
Hardware: cache recent translations 
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Basic Issues in VM System Design 
size of information blocks (pages) that are transferred from 
      secondary (disk) to main storage (Mem) 
 
Page brought into Mem, if Mem is full some page 
      of Mem must be released to make room for the new page --> 
      replacement policy 
 
missing page fetched from secondary memory only on the occurrence 
      of a page fault  -->  fetch/load policy 

Paging Organization 
 
virtual and physical address space partitioned into blocks of equal size 

page frames 

pages 

pages 
reg 

cache 
mem disk 

frame 
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Address Map 
V = {0, 1, . . . , n - 1}   virtual address space 
M = {0, 1, . . . , m - 1}  physical address space 
 
MAP:  V -->  M  U  {0}  address mapping function 

n can be > m 

MAP(a)  =  a'  if data at virtual address a is present in physical  
                           address a'  in M 
 
              =  0  if data at virtual address a is not present in M need to  

  allocate address in M 

Processor 

Name Space V 

Addr Trans 
Mechanism 

fault 
handler 

Main 
Memory 

Secondary 
Memory 

a 

a 
a' 

0 

missing item fault 

physical address OS performs 
this transfer 
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Paging Organization 
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Virtual Memory 
Address Mapping 

VA page no. Page offset 
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Page Table 
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(concatenation) 

Virt. Addr (VA) 

Page table stored in memory 
One page table per process 
Start of page table stored in  

 page table base register 
V – Is page in memory or on disk 
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Address Mapping Algorithm 
If  V = 1 (where is page currently stored?) 
    then page is in main memory at frame address stored in table 
    else page is located in secondary memory (location determined at  
    process creation) 
 
Access Rights 
    R = Read-only,  R/W = read/write,  X = execute only 
 
If kind of access not compatible with specified access rights, 
    then protection_violation_fault 
 
If valid bit not set then page fault 

Terms: 
Protection Fault:  access rights violation;  hardware raises exception, 
      microcode, or software fault handler 
 
Page Fault:  page not resident in physical memory, also causes a trap; 
      usually accompanied by a context switch:  current process 
      suspended while page is fetched from secondary storage; page faults 
      usually handled in software by OS because page fault to  
      secondary memory takes million+ cycles  
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*Hardware/software interface 
°  What checks does the processor perform during a load/store memory 

access? 
•  Effective address computed in pipeline is virtual 
•  Before accessing memory, must perform virtual-physical mapping 

-  At hardware speed, critical to performance 
•  If there is a valid mapping, load/store proceeds as usual; address 

sent to cache, DRAM is the mapped address (physical addressed)  
•  If there is no valid mapping, or if there is a protection violation, 

processor does not know how to handle it 
-  Throw an exception 

–  Save the PC of the instruction that caused the exception so that 
it can be retried later 

–  Jump into an operating system exception handling routine 
-  O/S handles exception using its specific policies (Linux, 

Windows will behave differently) 
-  Once it finishes handling, issue “return from interrupt” 

instruction to recover PC and try instruction again 
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Virtual Address and a Cache 

CPU Trans- 
lation Cache Main 

Memory 

VA PA miss 

hit 
data 

It takes an extra  memory access to translate VA to PA 
 
This makes cache access very expensive, and this is the "innermost 
      loop" that you want to go as fast as possible 
 
 
ASIDE:  Why access cache with PA at all?  VA caches have a problem! 
      synonym problem:  
       1. two different virtual addresses map to same physical address   

  =>  two different cache entries holding data for 
  the same physical address!  (data sharing between 
  different processes) 
 2. two same virtual addresses (from different processes) map to 
  different physical addresses 
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TLBs 
A way to speed up translation is to use a special cache of recently 
      used page table entries  --  this has many names, but the most 
      frequently used is Translation Lookaside Buffer or TLB 

Virtual Address   Physical Address   Dirty   Ref   Valid   Access 

TLB access time comparable to, though shorter than, cache access time 
      (still much less than main memory access time) 
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Translation Look-Aside Buffers 
Just like any other cache, the TLB can be organized as fully associative, 
      set associative, or direct mapped 
 
TLBs are usually small, typically not more than hundreds of entries. 
      This permits large/full associativity. 

CPU TLB 
Lookup Cache Main 

Memory 

VA PA miss 

hit 

data 

Trans- 
lation 

hit 

miss 

20 t t 1/2 t 

Translation 
with a TLB 
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Reducing Translation Time 

Machines with TLBs can go one step further to reduce # cycles/cache 
access 

 
They overlap the cache access with the TLB access 
 
Works because high order bits of the VA are used to look up in the TLB 
      while low order bits are used as index into cache 

  * Virtually indexed, physically tagged. 
 

  vm.15 

Overlapped Cache & TLB Access 

TLB Cache 

10 2 
00 

4 bytes 

index 1 K 

page # disp 
20 12 

assoc 
lookup 32 

PA Hit/ 
Miss PA Data Hit/ 

Miss 

= 

IF cache hit AND (cache tag = PA) then deliver data to CPU 
ELSE IF [cache miss OR (cache tag != PA)] and TLB hit THEN 
               access memory with the PA from the TLB 
ELSE do standard VA translation 
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Problems With Overlapped TLB Access 
Overlapped access only works as long as the address bits used to 
      index into the cache do not change as the result of VA translation 
 
This usually limits things to small caches, large page sizes, or high 
       n-way set associative caches if you want a large cache 

 (e.g., cache size and page size need to match) 
 
Example:  suppose everything the same except that the cache is 
      increased to 8 K bytes instead of 4 K: 

11 2 
00 

virt page # disp 
20 12 

cache  
index 

This bit is changed 
by VA translation, but 
is needed for cache 
lookup 

Solutions: 
      go to 8K byte page sizes 
      go to 2 way set associative cache (would allow you to continue to 
            use a 10 bit index) 

1K 
4 4 

10 
2 way set assoc cache 
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Hardware versus software TLB management 

°  The TLB misses can be handled either by software or hardware 
•  Software: processor has instructions to modify TLB in the 

architecture; O/S handles replacement 
•  E.g. MIPS 
•  Hardware: processor handles replacement without need for 

instructions to store TLB entries 
•  E.g. x86 

°  Instructions that cause TLB “flushes” are needed in hardware case too 
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Optimal Page Size 
Choose page that minimizes fragmentation 
 
 
large page size => internal fragmentation more severe (unused memory) 
BUT increase in  the # of pages / name space => larger page tables 
 
 
In general, the trend is towards larger page sizes because 
 
 
 
 
 
 
 
 
 
 
Most machines at 4K-64K byte pages today, with page sizes likely to 
      increase 

--  memories get larger as the price of RAM drops 
 
--  the gap between processor speed and disk speed grows wider 

Larger pages can exploit more spatial locality in transfers between 
disk and memory 

 
--  programmers desire larger virtual address spaces 
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2-level page table 
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Example: two-level address translation in x86 

CR3 directory 

table 

10 10 12 
VA 

PA 
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Example: Linux VM 

°  Demand-paging 
•  Pages are brought into physical memory when referenced 

°  Kernel keeps track of each process’ virtual address space using a 
mm_struct data structure 
•  Which contains pointers to list of “area” structures 

(vm_area_struct) 
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vm_next!

vm_next!

Linux VM areas  

task_struct!
mm_struct!

mm! mmap!

vm_area_struct!
vm_end!

vm_prot!
vm_start!

vm_end!

vm_prot!
vm_start!

vm_end!

vm_prot!

vm_next!

vm_start!

process virtual memory!

text!

data!

shared libraries!

•  Linked list of vm_area structures 
associated with process 

•  Start/end: 
-  Bounds of each VM map 

•  Prot: 
-  Protection info (r/w) 
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VM “areas” 

°  Linked vm_area_struct structures 

°  A VM area: a part of the process virtual memory space that has a 
special rule for the page-fault handlers (i.e. a shared library, the 
executable area etc). 

°  These are specified in a vm_area_struct 
•  Start and end VM address of area 
•  Protection information, flags 
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Linux fault handling  

vm_area_struct!
vm_end!

r/o!

vm_next!

vm_start!

vm_end!

r/w/!

vm_next!

vm_start!

vm_end!

r/o!

vm_next!

vm_start!

process virtual memory!

VMA3!

VMA2!

VMA1!

0!

°  Exception triggers O/S handling if address 
out of bounds or protection violated 

°  Traverse vm_area list, check for bounds 
•  If not mapped, it is a segmentation 

violation – signal to process 

°  If mapped, check protection of 
vm_area_struct 

•  E.g. r/o, r/w 
•  Signal protection violation to process 

if access not allowed 
•  Otherwise, handle fault and bring 

page to memory 
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Page Replacement Algorithms 
Just like cache block replacement! 
 
 
 
Least Recently Used: 
--  selects the least recently used page for replacement 
 
--  requires knowledge about past references, more difficult to implement 
     
--  good performance, recognizes principle of locality 
 
-- hard to keep track – update a structure on each memory reference? 
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Page Replacement (Continued) 
Not Recently Used: 
Associated with each page is a reference flag such that 
      ref flag = 1  if the page has been referenced in recent past 
                   = 0  otherwise 
 
--  if replacement is necessary, choose any page frame such that its 
     reference bit is 0.  This is a page that has not been referenced in the 
     recent past 
 
--  an implementation of NRU: 

1 0 
1 0 
0 
0 

page table entry 
page 
table 
entry 

ref 
bit 

last replaced pointer (lrp) 
if replacement is to take place, 
advance lrp to next entry (mod 
table size) until one with a 0 bit 
is found;  this is the target for 
replacement;  As a side effect, 
all examined PTE's have their 
reference bits set to zero. 

1 0 

An optimization is to search for the a page that is both  
not recently referenced AND not dirty. 
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Demand Paging and Prefetching Pages 
Fetch Policy 
      when is the page brought into memory? 
      if pages are loaded solely in response to page faults, then the 
            policy is demand paging 
 
 
An alternative is prefetching: 
      anticipate future references and load such pages before their 
            actual use 
 
      +  reduces page transfer overhead 
 
      -  removes pages already in page frames, which could adversely 
         affect the page fault rate 
 
      -  predicting future references usually difficult 
 
 
Most systems implement demand paging without prefetching 
 
(One way to obtain effect of prefetching behavior is increasing the page size 
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Discussion – caches or no caches? 

°  Caches help performance when there is locality but can be overhead if 
locality is not high 

•  Each hit/miss decision at each cache level requires a lookup 
•  Some applications can run better with fewer cache levels 

°  Example: “Cell” processor 
•  No cache on attached processing units 
•  There is a small memory array next to each unit, but it is handled by 

software (not a cache controller) 
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Summary 

°  Virtual memory: a mechanism to provide much larger memory than 
physically available memory in the system 

°  Placement, replacement and other policies can have significant impact 
on performance 

°  Interaction of Virtual memory with physical memory hierarchy is 
complex and addresses translation mechanisms must be designed 
carefully for good performance.  


