
EEL-4713C – Ann Gordon-Ross

EEL-4713C
 Computer Architecture

Instruction Set Architectures

EEL-4713C – Ann Gordon-Ross

Outline

•  Instruction set architectures
•  The MIPS instruction set

–  Operands and operations
–  Control flow
–  Memory addressing
–  Procedures and register conventions
–  Pseudo-instructions

•  Reading:
–  Textbook, Chapter 2
–  Sections 2.1-2.8, 2.10-2.13, 2.17-2.20

EEL-4713C – Ann Gordon-Ross

Abstraction layers

Devices (CMOS transistors)

High-level language (e.g. C++, Java)

Low-level language (Assembly)

Register-level transfer (Datapath)

Basic logic gates (AND, OR)

Software

Hardware

User

EEL-4713C – Ann Gordon-Ross

Introduction to Instruction Sets

•  Instructions: words of computer hardware�s
language

–  Instruction sets: vocabulary
–  What is available for software to program a computer

•  Many sets exist; core functionality is similar
–  Support for arithmetic/logic operations, data flow and control

•  We will focus on the MIPS set in class
–  Simple to learn and to implement
–  Hardware perspective will be the topic of Chapter 5
–  Current focus will be on software, more specifically instructions

that result from compiling programs written in the C language

EEL-4713C – Ann Gordon-Ross

Stored-program concept

•  Treat instructions as data
–  Same technology used for both

EEL-4713C – Ann Gordon-Ross

Stored-program execution flow

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

EEL-4713C – Ann Gordon-Ross

Basic issues and outline

•  What operations are supported?
–  What operands do they use?

•  How are instructions represented in memory?

•  How are data elements represented in memory?

•  How is memory referenced?

•  How to determine the next instruction in sequence?

EEL-4713C – Ann Gordon-Ross

What operations are supported?

•  �Classic� instruction sets:
•  Typical �integer� arithmetic and logic functions:

–  Addition, subtraction
–  Division, multiplication
–  AND, OR, NOT, …

•  Floating-point operations
–  Add, sub, mult, div, square root, exponential, …

•  More recent add-ons:
–  Multi-media, 3D operations

EEL-4713C – Ann Gordon-Ross

MIPS operations

•  See MIPS reference chart (green page of textbook)
for full set of operations

•  Most common: addition and subtraction

•  MIPS assembly: add rd, rs, rt
–  register rd holds the sum of values currently in registers rs and rt

EEL-4713C – Ann Gordon-Ross

Memory Layout and Instruction Addressing

•  In the MIPS architecture, memory is essentially an
array of 8-bit bytes – thus the memory is byte
addressable….

M[0]
M[1]
M[2]
M[3]
M[4]
M[5]
M[6]
M[7]

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

•  …but 1 instruction is 32-bits = 1 word
PC

•  PC is a special register that points to
the current instruction being fetched

•  Incrementing the PC (i.e., PC ++)
actually moves PC ahead 4 memory
addresses -> PC = PC + 4

PC

EEL-4713C – Ann Gordon-Ross

Memory Layout and Data Addressing

•  Data is typically 1 word (32 bits), but some data is
smaller (i.e., ASCII characters are 8 bits), thus the
memory must be byte addressable

M[0] (0x00)
M[1] (0x01)
M[2] (0x02)
M[3] (0x03)
M[4] (0x04)
M[5] (0x05)
M[6] (0x06)
M[7] (0x07)

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

8-bits = 1 byte

•  Assume we have an array of 2 words in high level
code (i.e., int A[2])

A[0]

A[1]

•  The base address of the array is 0x00
•  A[0] is at 0x00; A[1] is at 0x04
•  To access A[1] in assembly code, you

have to know the base address of A
(0x00) and the offset into the array,
which is 1 word (in high level code),
but 4 memory locations, thus the
address of A[1] is:

 base[A] + 4(offset) = 0x00 + 4(1) = 0x04

EEL-4713C – Ann Gordon-Ross

Operands

•  In a RISC ISA like MIPS, operands for arithmetic and
logic operations always come from registers

–  Other sets (e.g. Intel IA-32/x86) support memory operands

•  Registers: fast memory within the processor
datapath

–  Goal is to be accessible within a clock cycle
–  How many?

»  Smaller is faster – typically only a few registers are available
»  MIPS: 32 registers + extras, not all programmer accessible

–  How wide?
»  32-bit and 64-bit now common
»  Evolved from 4-bit, 8-bit, 16-bit
»  MIPS: both 32-bit and 64-bit. We will only study 32-bit.

EEL-4713C – Ann Gordon-Ross

Example

f = (g+h) – (i+j);

add $t0,$s1,$s2 # $t0 holds g+h
add $t1,$s3,$s4 # $t1 holds i+j
sub $s0,$t0,$t1 # $s0 holds f

(assume f=$s0, g=$s1, h=$s2, i=$s3, j=$s4)

EEL-4713C – Ann Gordon-Ross

Operands (cont)

•  Operands need to be transferred from registers to
memory (and vice versa)

•  Data transfer instructions:
–  Load: transfer from memory to register
–  Store: transfer from register to memory
–  What to transfer?

»  32-bit integer? 8-bit ASCII character?
»  MIPS: 32-bit, 16-bit and 8-bit

–  From where in memory?
»  MIPS: 32-bit address needs to be provided
»  addressing modes

–  Which register?
»  MIPS: one out of 32 registers needs to be provided

EEL-4713C – Ann Gordon-Ross

Example

A[12] = h + A[8];

lw $t0,32($s3) # $t0: A[8] (32=8*4bytes)
add $t0,$s2,$t0 # $t0 = h+A[8]
sw $t0,48($s3) # A[12] holds final result

Assume: A is an array of 32-bit/4-Byte integers (words)

 A’s base address is in $s3.
 h=$s2

EEL-4713C – Ann Gordon-Ross

Immediate operands

•  Constants are commonly used in programming
–  E.g. 0 (false), 1 (true)

•  Immediate operands:
–  Which instructions need immediate operands?

»  MIPS: some of arithmetic/logic (e.g. add)
»  Loads and stores
»  Jumps (will see later)

–  Width of immediate operand?
»  In practice, most constants are small
»  MIPS: pack 16-bit immediate in instruction code

•  Example: addi $s3, $s3, 4

EEL-4713C – Ann Gordon-Ross

Instruction representations

•  Stored program: instructions are in memory
•  Must be represented with some binary encoding
•  Assembly language

–  mnemonics used to facilitate people to �read the code�
–  E.g. MIPS add $t0,$s1,$s2

•  Machine language
–  Binary representation of instructions
–  E.g. MIPS 00000010001100100100000000100000

•  Instruction format
–  Form of representation of an instruction
–  E.g. MIPS 00000010001100100100000000100000

»  Red: �add� code; brown: �$s2�

EEL-4713C – Ann Gordon-Ross

MIPS instruction encoding fields

•  op (6 bits): basic operation; �opcode�
•  rs (5 bits): first register source operand
•  rt (5 bits): second register source operand
•  rd (5 bits): register destination
•  shamt (5 bits): shift amount for binary shift

instructions
•  funct (6 bits): function code; select which variant of

the �op� field is used. �function code�

•  �R-type�
–  Two other types: I-type, J-type; will see later

op rs rt rd shamt funct

EEL-4713C – Ann Gordon-Ross

Logical operations

•  Bit-wise operations; packing and unpacking of bits
into words

•  MIPS:
–  Shift left/right

»  E.g. sll $s1,$s2,10
–  Bit-wise AND, OR, NOT, NOR

»  E.g. and $s1,$s2,$s3
–  Immediate AND, OR

»  E.g. andi $s1,$s2,100

•  What does andi $s1,$s1,0 do?

EEL-4713C – Ann Gordon-Ross

Decision-making: control flow

•  A microprocessor fetches an instruction from
memory address pointed by a register (PC)

•  The PC is implicitly incremented to point to the next
memory address in sequence after an instruction is
fetched

•  Software requires more than this:
–  Comparisons; if-then-else
–  Loops; while, for

•  Instructions are required to change the value of PC
from the implicit next-instruction

–  Conditional branches
–  Unconditional branches

EEL-4713C – Ann Gordon-Ross

MIPS control flow

•  Conditional branches:
–  beq $s0,$s1,L1

»  Go to statement labeled L1 if $s0 equal to $s1
–  bne $s0,$s1,L1

»  Go to statement labeled L1 if $s0 not equal to $s1

•  Unconditional branches:
–  J L2

»  Go to statement labeled L2

EEL-4713C – Ann Gordon-Ross

Example: if/then/else

if (i==j) f = g+h; else f=g-h;

Loop: bne $s3,$s4, Else # go to else if i!=j
 add $s0,$s1,$s2 # f=g+h
 j Exit
Else: sub $s0,$s1,$s2
Exit:

($s3=i, $s4=j, $s1=g, $s2=h, $s0=f)

EEL-4713C – Ann Gordon-Ross

Example: while loop

while (save[i]==k) i=i+1;

Loop: sll $t1,$s3,2 # $t1 holds 4*i
 add $t1,$t1,$s6 # $t1:addr of save[i]
 lw $t0,0($t1) # $t0: save[i]
 bne $t0,$s5,Exit # not equal? end
 addi $s3,$s3,1 # increment I
 j Loop # loop back
Exit:

($s3=i, $s5=k, $s6 base address of save[])

EEL-4713C – Ann Gordon-Ross

MIPS control flow

•  Important note:
–  MIPS register $zero is not an ordinary register

»  It has a fixed value of zero
–  A special case to facilitate dealing with the zero value, which is

commonly used in practice

•  E.g. MIPS does not have a branch-if-less-than
–  Can construct it using set-less-than (slt) and register $zero:
–  E.g.: branch if $s3 less than $s2

»  slt $t0,$s3,$s2 # $t0=1 if $s3<$s2
»  bne $t0,$zero,target # branch if $t0 not equal to zero

EEL-4713C – Ann Gordon-Ross

MIPS control flow: supporting procedures

•  Instruction �jump-and-link� (jal JumpAddr)
–  Jump to 26-bit immediate address JumpAddr

»  Used when calling a subroutine
–  Set R31 ($ra) to PC+4

»  Save return address (next instruction after procedure call) in a
specific register

•  Instruction �jump register� (jr $rx)
–  Jump to address stored in address $rx
–  jr $ra: return from subroutine

EEL-4713C – Ann Gordon-Ross

Support for procedures

•  Handling arguments and return values
–  $a0-$a3: registers used to pass parameters to subroutine
–  $v0-$v1: registers used to return values
–  Software convention – these are general-purpose registers

•  How to deal with registers that procedure body
needs to use, but caller does not expect to be
modified?

–  E.g. in nested/recursive subroutines

•  Memory �stacks” store call frames
–  Placeholder for register values that need to be preserved during

procedure call

EEL-4713C – Ann Gordon-Ross

Procedure calls and stacks
Stacking of Subroutine Calls & Returns and Environments:

A:
 CALL B

 CALL C

 C:
 RET

 RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack as part of the architecture
 (e.g., VAX)

Sometimes stacks are implemented via software convention
 (e.g., MIPS)

EEL-4713C – Ann Gordon-Ross

Memory Stacks

Useful for stacked environments/subroutine call & return even if
operand stack not part of architecture

Stacks that Grow Up vs. Stacks that Grow Down:

a
b
c

0 Little

inf. Big 0 Little

inf. Big

Memory
Addresses

SP

Next
Empty?

Last
Full?

Little --> Big/Last Full

POP: Read from Mem(SP)
 Decrement SP

PUSH: Increment SP
 Write to Mem(SP)

grows
up

grows
down

Little --> Big/Next Empty

POP: Decrement SP
 Read from Mem(SP)

PUSH: Write to Mem(SP)
 Increment SP

EEL-4713C – Ann Gordon-Ross

Call-Return Linkage: Stack Frames
FP

ARGS

Callee Save
Registers

Local Variables

SP

Reference args and
local variables at
fixed offset
from FP

Grows and shrinks during
expression evaluation

(old FP, RA)

High Mem

Low Mem

SP may change during the procedure; FP provides
a stable reference to local variables, arguments

EEL-4713C – Ann Gordon-Ross

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

MIPS: Software conventions for Registers

16 s0 saved: callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont�d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

See Figure 2.18.

EEL-4713C – Ann Gordon-Ross

Example in C: swap

swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

EEL-4713C – Ann Gordon-Ross

swap: MIPS
Using saved registers, swap $a0=v[], $a1=k:
swap:
addi $sp,$sp,-12 ; room for 3 (4-byte) words
sw $s0,8($sp)
sw $s1,4($sp)
sw $s2,0($sp)
sll $s1, $a1,2 ; multiply k by 4 (offset)
addu $s1, $a0,$s1 ; address of v[k] (base)
lw $s0, 0($s1) ; load v[k]
lw $s2, 4($s1) ; load v[k+1]
sw $s2, 0($s1) ; store v[k+1] into v[k]
sw $s0, 4($s1) ; store old v[k] into v[k+1]
lw $s0,8($sp)
lw $s1,4($sp)
lw $s2,0($sp)
addi $sp,$sp,12 ; restore stack pointer
jr $ra ; return to caller

swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

EEL-4713C – Ann Gordon-Ross

swap: MIPS
Using temporaries ($a0=v[], $a1=k)

swap:
sll $t1, $a1,2 ; multiply k by 4
addu $t1, $a0,$t1 ; address of v[k]
lw $t0, 0($t1) ; load v[k]
lw $t2, 4($t1) ; load v[k+1]
sw $t2, 0($t1) ; store v[k+1] into v[k]
sw $t0, 4($t1) ; store old v[k] into v[k+1]
jr $ra ; return to caller

swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

EEL-4713C – Ann Gordon-Ross

MIPS Addressing modes

•  Common modes that
compilers generate are
supported:

–  Immediate
»  16 bits, in inst

–  Register
»  32-bit register contents

–  Base
»  Register + constant offset;

8-, 16- or 32-bit data in
memory

–  PC-relative
»  PC+constant offset

–  Pseudo-direct
»  26-bit immediate, shifted

left 2x and concatenated to
the 4 MSB bits of the PC

I-type R-type J-type

EEL-4713C – Ann Gordon-Ross

MIPS Addressing: 32-bit constants

•  All MIPS instructions are 32-bit long
–  Reason: simpler, faster hardware design: instruction fetch, decode,

cache

•  However, often 32-bit immediates are needed
–  For constants and addresses

•  Loading a 32-bit constant to register takes 2
operations

–  Load upper (a.k.a. most-significant, MSB) 16 bits (�lui� instruction)
»  Also fills lower 16 bits with zeroes
»  lui $s0,0x40 results in $s0=0x4000

–  Load lower 16 bits (�ori� instruction, or immediate)
»  e.g. ori $s0,$s0,0x80 following lui above results in $s0=0x4080

EEL-4713C – Ann Gordon-Ross

MIPS Addressing: targets of jumps/branches

•  Conditional branches:
–  16-bit displacement relative to current PC

»  I-type instruction, see reference chart
–  �Back� and �forth� jumps supported

»  Signed displacement; positive and negative
–  �Short� conditional branches suffice most of the time

»  E.g. small loops (back); if/then/else (forward)

•  Jumps:
–  For �far� locations
–  26-bit immediate, J-type instruction
–  Shifted left by two (word-aligned) -> 28 bits
–  Concatenate 4 MSB from PC -> 32 bits

EEL-4713C – Ann Gordon-Ross

Instructions for synchronization

•  Multiple cores, multiple threads
•  Synchronization is necessary to impose ordering

–  E.g.: a group working on a shared document
–  Two concurrent computations where there is a dependence

»  A = (B + C) * (D + E)
»  The additions can occur concurrently, but the multiplication

waits for both

•  Proper instruction set design can help support
efficient synchronization primitives

EEL-4713C – Ann Gordon-Ross

Synchronization primitives

•  Typically multiple cores share a single logical main
memory, but each has its own register set

–  Or multiple processes in a single core

•  �Locks� are basic synchronization primitives
–  Only one process �gets� a lock at a time

•  Key insight: �atomic� read/write on memory location
can be used to create locks

–  Goal: nothing can interpose between read/write to memory location
–  Cannot be achieved simply using regular loads and stores – why?

•  Different possible approaches to supporting
primitives in the ISA

–  Involving moving data between registers and memory

EEL-4713C – Ann Gordon-Ross

MIPS synchronization primitives

•  Load linked (ll)
–  Load a value from memory to a register, like a regular load
–  But, in addition, hardware keeps track of the address from which it

was loaded

•  Store conditional (sc)
–  Store a value from register to memory succeeds *only if* no

updates to load linked address
–  Register value also change: 0 if store failed, 1 if succeeded

EEL-4713C – Ann Gordon-Ross

Example

•  Goal: build simple �lock�
–  Value �0� indicates it is free
–  Value �1� indicates it is not available
–  E.g. if a group is collaborating on the same document, an individual

may only make changes if it successfully gets lock=0

•  Primitive: atomic exchange $s4 and 0($s1)
–  Attempt to acquire a lock: exchange �1� ($s4) with mem location

0($s1)

•  Try: add $t0, $zero, $s4 - $t0 gets $s4
•  ll $t1, 0($s1) - load-linked lock addr
•  sc $t0, 0($s1) - conditional store �1�
•  beq $t0,$zero,try - if failed, $t0=0; retry
•  add $s4, $zero, $s1 - success: copy 0($s1)

 to $s4

EEL-4713C – Ann Gordon-Ross

Compiler, assembler, linker

•  From high-level languages to machine executable program

C program Java program

EEL-4713C – Ann Gordon-Ross

Compiler

•  Translates high-level language program (source
code) into assembly-level

–  E.g. MIPS assembly; Java bytecodes

•  Functionality: check syntax, produce correct code,
perform optimizations (speed, code size)

–  See 2.11 for more details

EEL-4713C – Ann Gordon-Ross

Assembler

•  Translates assembly-level program into machine-
level code

–  �Object� files (.o)

•  Supports instructions of the processor�s ISA, as well
as �pseudo-instructions� that facilitate programming
and code generation

–  Example: move $t0,$t1 a pseudo-instruction for add $t0,$zero,$t1
»  Makes it more readable

–  Other examples: branch on less than (blt), load 32-bit immediate
»  �unfold� pseudo-instruction into more than 1 real instruction

–  Cost: one register ($at) reserved to assembler, by convention

EEL-4713C – Ann Gordon-Ross

Linker

•  Large programs can generate large object files
•  Multiple developers may be working on various

modules of a program concurrently
–  Sensible to partition source code across multiple files

•  In addition, many commonly used functions are
available in libraries

–  E.g. disk I/O, printf, network sockets, …

•  Linker: takes multiple independent object files and
composes an �executable file�

EEL-4713C – Ann Gordon-Ross

Loader

•  Brings executable file from disk to memory for
execution

–  Allocates memory for text and data
–  Copies instructions and input parameters to memory
–  Initializes registers & stack
–  Jumps to start routine (C�s �main()�)

•  Dynamically-linked libraries
–  Link libraries to executables, �on-demand�, after being loaded
–  Often the choice for functions common to many applications
–  Why?

»  Reduce size of executable files – disk & memory space saved
»  Many executables can share these libraries

–  .DLL in Windows, .so (shared-objects) in Linux

EEL-4713C – Ann Gordon-Ross

Miscellaneous MIPS instructions

•  Break
–  A breakpoint trap occurs, transfers control to exception handler

•  Syscall
–  A system trap occurs, transfers control to exception handler

•  coprocessor instructions
–  Support for floating point: discussed later

•  TLB instructions
–  Support for virtual memory: discussed later

•  restore from exception
–  Restores previous interrupt mask & kernel/user mode bits into status

register
•  load word left/right

–  Supports misaligned word loads

•  store word left/right
–  Supports misaligned word stores

EEL-4713C – Ann Gordon-Ross

Details of the MIPS instruction set

•  Register zero always has the value zero (even if you try to write it)
•  Jump and link instruction puts the return address PC+4 into the

link register
•  All instructions change all 32 bits of the destination register

(including lui, lb, lh) and all read all 32 bits of sources (add, sub,
and, or, …)

•  Immediate arithmetic and logical instructions are extended as
follows:

–  logical immediates are zero extended to 32 bits
– arithmetic immediates are sign extended to 32 bits

•  The data loaded by the instructions lb and lh are extended as
follows:

–  lbu, lhu are zero extended
–  lb, lh are sign extended

•  Overflow can occur in these arithmetic and logical instructions:
– add, sub, addi
–  it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult,

multu, div, divu
EEL-4713C – Ann Gordon-Ross

Reduced and Complex Instruction Sets

•  MIPS is one example of a RISC-style architecture
–  Reduced Instruction Set Computer
–  Designed from scratch in the 80�s

•  Intel�s �IA-32� architecture (x86) is one example of a
CISC architecture

–  Complex Instruction Set
–  Has been evolving over almost 30 years

EEL-4713C – Ann Gordon-Ross

x86

•  Example of a CISC ISA
–  P6 microarchitecture and subsequent implementations use RISC micro-

operations
•  Descended from 8086
•  Most widely used general purpose processor family

–  Steadily gaining ground in high-end systems; 64-bit extensions now from
AMD and Intel

EEL-4713C – Ann Gordon-Ross

Some history

•  1978: 8086 launched; 16-bit wide registers; assembly-
compatible with 8-bit 8080

•  1982: 80286 extends address space to 24 bits (16MB)
•  1985: 80386 extends address space and registers to 32 bits

(4GB); paging and protection for O/Ss
•  1989-95: 80486, Pentium, Pentium Pro; only 4 instructions

added; RISC-like pipeline
•  1997-2001: MMX extensions (57 instructions), SSE extensions

(70 instructions), SSE-2 extensions; 4 32-bit floating-point
operations in a cycle

•  2003: AMD extends ISA to support 64-bit addressing, widens
registers to 64-bit.

•  2004: Intel supports 64-bit, relabeled EM64T
•  Ongoing: Intel, AMD extend ISA to support virtual machines

(Intel VT, AMD Pacifica). Dual-core microprocessors.

EEL-4713C – Ann Gordon-Ross

x86 Registers

32-bit General purpose registers
EAX, EBX, ECX, EDX,
EBP, ESI, EDI, ESP
 Special uses for certain instructions
 (e.g. EAX functions as accumulator,
 ECX as counter for loops)

16-bit segment registers
CS, DS, SS, ES, FS, GS

80-bit floating point stack
ST(0)-ST(7)

EEL-4713C – Ann Gordon-Ross

X86 operations

•  Destination for operations can be register or memory
•  Source can be register, memory or immediate

•  Data movement: move, push, pop
•  ALU operations
•  Control flow: conditional branches, unconditional

jumps, calls, returns
•  String instructions: move, compare

–  MOVS: copies from string source to destination, incrementing ESI
and EDI; may be repeated

–  Often slower than equivalent software loop

EEL-4713C – Ann Gordon-Ross

X86 encoding

EEL-4713C – Ann Gordon-Ross

RISC vs. CISC

•  Long ago, assembly programming was very common
–  And memories were much smaller
–  CISC gives more programming power and can reduce code size

•  Nowadays, most programming is done with high-
level languages and compilers

–  Compilers do not use all CISC instructions
–  Simpler is better from an implementation standpoint – more on this

during class

•  Support for legacy codes and volume
–  Push for continued support of CISC ISAs like x86

•  Compromise approach
–  Present CISC ISA to the �outside world�
–  Convert CISC instructions to RISC internally

EEL-4713C – Ann Gordon-Ross

Next lecture

•  Introduction to the logic design process
–  Refer to slides and Appendix C, sections C.5-C.6

