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Outline 

•  Instruction set architectures 
•  The MIPS instruction set 

–  Operands and operations 
–  Control flow 
–  Memory addressing 
–  Procedures and register conventions 
–  Pseudo-instructions 

•  Reading: 
–  Textbook, Chapter 2 
–  Sections 2.1-2.8, 2.10-2.13, 2.17-2.20 
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Abstraction layers 

Devices (CMOS transistors) 

High-level language (e.g. C++, Java) 

Low-level language (Assembly) 

Register-level transfer (Datapath) 

Basic logic gates (AND, OR) 

Software 

Hardware 

User 
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Introduction to Instruction Sets 

•  Instructions: words of computer hardware�s 
language 

–  Instruction sets: vocabulary 
–  What is available for software to program a computer 

•  Many sets exist; core functionality is similar 
–  Support for arithmetic/logic operations, data flow and control 

•  We will focus on the MIPS set in class 
–  Simple to learn and to implement 
–  Hardware perspective will be the topic of Chapter 5 
–  Current focus will be on software, more specifically instructions 

that result from compiling programs written in the C language 
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Stored-program concept 

•  Treat instructions as data 
–  Same technology used for both 
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Stored-program execution flow 

Instruction 
Fetch 

Instruction 
Decode 

Operand 
Fetch 

Execute 

Result 
Store 

Next 
Instruction 

Obtain instruction from program storage 

Determine required actions and instruction size 

Locate and obtain operand data 

Compute result value or status 

Deposit results in storage for later use 

Determine successor instruction 
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Basic issues and outline 

•  What operations are supported? 
–  What operands do they use? 

•  How are instructions represented in memory? 

•  How are data elements represented in memory? 

•  How is memory referenced? 

•  How to determine the next instruction in sequence? 
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What operations are supported? 

•  �Classic� instruction sets: 
•  Typical �integer� arithmetic and logic functions: 

–  Addition, subtraction 
–  Division, multiplication 
–  AND, OR, NOT, … 

•  Floating-point operations 
–  Add, sub, mult, div, square root, exponential, … 

•  More recent add-ons: 
–  Multi-media, 3D operations 
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MIPS operations 

•  See MIPS reference chart (green page of textbook) 
for full set of operations 

•  Most common: addition and subtraction 

•  MIPS assembly: add rd, rs, rt 
–  register rd holds the sum of values currently in registers rs and rt 
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Memory Layout and Instruction Addressing 

•  In the MIPS architecture, memory is essentially an 
array of 8-bit bytes – thus the memory is byte 
addressable…. 

M[0] 
M[1] 
M[2] 
M[3] 
M[4] 
M[5] 
M[6] 
M[7] 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

•  …but 1 instruction is 32-bits = 1 word 
PC 

•  PC is a special register that points to 
the current instruction being fetched 

•  Incrementing the PC (i.e., PC ++) 
actually moves PC ahead 4 memory 
addresses -> PC = PC + 4 

PC 
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Memory Layout and Data Addressing 

•  Data is typically 1 word (32 bits), but some data is 
smaller (i.e., ASCII characters are 8 bits), thus the 
memory must be byte addressable 

M[0] (0x00) 
M[1] (0x01) 
M[2] (0x02) 
M[3] (0x03) 
M[4] (0x04) 
M[5] (0x05) 
M[6] (0x06) 
M[7] (0x07) 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

8-bits = 1 byte 

•  Assume we have an array of 2 words in high level 
code (i.e., int A[2]) 

A[0] 

A[1] 

•  The base address of the array is 0x00 
•  A[0] is at 0x00; A[1] is at 0x04 
•  To access A[1] in assembly code, you 

have to know the base address of A 
(0x00) and the offset into the array, 
which is 1 word (in high level code), 
but 4 memory locations, thus the 
address of A[1] is:  

 base[A] + 4(offset) = 0x00 + 4(1) = 0x04 
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Operands 

•  In a RISC ISA like MIPS, operands for arithmetic and 
logic operations always come from registers 

–  Other sets (e.g. Intel IA-32/x86) support memory operands 

•  Registers: fast memory within the processor 
datapath 

–  Goal is to be accessible within a clock cycle 
–  How many? 

»  Smaller is faster – typically only a few registers are available 
»  MIPS: 32 registers + extras, not all programmer accessible 

–  How wide? 
»  32-bit and 64-bit now common 
»  Evolved from 4-bit, 8-bit, 16-bit 
»  MIPS: both 32-bit and 64-bit. We will only study 32-bit. 
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Example 

f = (g+h) – (i+j); 

add $t0,$s1,$s2  # $t0 holds g+h 
add $t1,$s3,$s4  # $t1 holds i+j 
sub $s0,$t0,$t1  # $s0 holds f 
 
 
 
(assume f=$s0, g=$s1, h=$s2, i=$s3, j=$s4) 
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Operands (cont) 

•  Operands need to be transferred from registers to 
memory (and vice versa) 

•  Data transfer instructions: 
–  Load: transfer from memory to register 
–  Store: transfer from register to memory 
–  What to transfer? 

»  32-bit integer? 8-bit ASCII character? 
»  MIPS: 32-bit, 16-bit and 8-bit 

–  From where in memory? 
»  MIPS: 32-bit address needs to be provided 
»  addressing modes 

–  Which register? 
»  MIPS: one out of 32 registers needs to be provided 
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Example 

A[12] = h + A[8]; 

lw  $t0,32($s3)  # $t0: A[8] (32=8*4bytes) 
add $t0,$s2,$t0  # $t0 = h+A[8] 
sw  $t0,48($s3)  # A[12] holds final result  
 
 
 
Assume: A is an array of 32-bit/4-Byte integers (words) 

  A’s base address is in $s3.  
  h=$s2 
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Immediate operands 

•  Constants are commonly used in programming 
–  E.g. 0 (false), 1 (true) 

•  Immediate operands: 
–  Which instructions need immediate operands? 

»  MIPS: some of arithmetic/logic (e.g. add) 
»  Loads and stores 
»  Jumps (will see later) 

–  Width of immediate operand? 
»  In practice, most constants are small 
»  MIPS: pack 16-bit immediate in instruction code 

•  Example: addi $s3, $s3, 4 
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Instruction representations 

•  Stored program: instructions are in memory 
•  Must be represented with some binary encoding 
•  Assembly language 

–  mnemonics used to facilitate people to �read the code� 
–  E.g. MIPS add $t0,$s1,$s2 

•  Machine language 
–  Binary representation of instructions 
–  E.g. MIPS 00000010001100100100000000100000 

•  Instruction format 
–  Form of representation of an instruction 
–  E.g. MIPS 00000010001100100100000000100000 

»  Red: �add� code; brown: �$s2� 
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MIPS instruction encoding fields 

•  op (6 bits): basic operation; �opcode� 
•  rs (5 bits): first register source operand 
•  rt (5 bits): second register source operand 
•  rd (5 bits): register destination 
•  shamt (5 bits): shift amount for binary shift 

instructions 
•  funct (6 bits): function code; select which variant of 

the �op� field is used. �function code� 

•  �R-type� 
–  Two other types: I-type, J-type; will see later 

op rs rt rd shamt funct 
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Logical operations 

•  Bit-wise operations; packing and unpacking of bits 
into words 

•  MIPS: 
–  Shift left/right 

»  E.g. sll $s1,$s2,10 
–  Bit-wise AND, OR, NOT, NOR 

»  E.g. and $s1,$s2,$s3 
–  Immediate AND, OR 

»  E.g. andi $s1,$s2,100 

•  What does andi $s1,$s1,0 do? 
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Decision-making: control flow 

•  A microprocessor fetches an instruction from 
memory address pointed by a register (PC) 

•  The PC is implicitly incremented to point to the next 
memory address in sequence after an instruction is 
fetched 

•  Software requires more than this: 
–  Comparisons; if-then-else 
–  Loops; while, for 

•  Instructions are required to change the value of PC 
from the implicit next-instruction 

–  Conditional branches 
–  Unconditional branches 



EEL-4713C – Ann Gordon-Ross 

MIPS control flow 

•  Conditional branches: 
–  beq $s0,$s1,L1 

»  Go to statement labeled L1 if $s0 equal to $s1 
–  bne $s0,$s1,L1 

»  Go to statement labeled L1 if $s0 not equal to $s1 

•  Unconditional branches: 
–  J L2 

»  Go to statement labeled L2 
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Example: if/then/else 

if (i==j) f = g+h; else f=g-h; 
 
Loop: bne $s3,$s4, Else  # go to else if i!=j 
       add $s0,$s1,$s2  # f=g+h 
      j Exit 
Else:  sub $s0,$s1,$s2 
Exit:  
 
($s3=i, $s4=j, $s1=g, $s2=h, $s0=f) 
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Example: while loop 

while (save[i]==k)  i=i+1; 

Loop: sll $t1,$s3,2    # $t1 holds 4*i 
       add $t1,$t1,$s6  # $t1:addr of save[i] 
       lw  $t0,0($t1)   # $t0: save[i] 
       bne $t0,$s5,Exit  # not equal? end 
       addi $s3,$s3,1  # increment I 
       j Loop            # loop back 
Exit:  
 
($s3=i, $s5=k, $s6 base address of save[]) 
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MIPS control flow 

•  Important note: 
–  MIPS register $zero is not an ordinary register 

»  It has a fixed value of zero 
–  A special case to facilitate dealing with the zero value, which is 

commonly used in practice 

•  E.g. MIPS does not have a branch-if-less-than 
–  Can construct it using set-less-than (slt) and register $zero: 
–  E.g.: branch if $s3 less than $s2 

»  slt $t0,$s3,$s2             # $t0=1 if $s3<$s2 
»  bne $t0,$zero,target   # branch if $t0 not equal to zero 



EEL-4713C – Ann Gordon-Ross 

MIPS control flow: supporting procedures 

•  Instruction �jump-and-link� (jal JumpAddr) 
–  Jump to 26-bit immediate address JumpAddr 

»  Used when calling a subroutine 
–  Set R31 ($ra) to PC+4 

»  Save return address (next instruction after procedure call) in a 
specific register 

•  Instruction �jump register� (jr $rx) 
–  Jump to address stored in address $rx 
–  jr $ra: return from subroutine 
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Support for procedures 

•  Handling arguments and return values 
–  $a0-$a3: registers used to pass parameters to subroutine 
–  $v0-$v1: registers used to return values 
–  Software convention – these are general-purpose registers 

•  How to deal with registers that procedure body 
needs to use, but caller does not expect to be 
modified? 

–  E.g. in nested/recursive subroutines 

•  Memory �stacks” store call frames 
–  Placeholder for register values that need to be preserved during 

procedure call 
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Procedure calls and stacks 
Stacking of Subroutine Calls & Returns and Environments: 

A:   
      CALL B 
 
 
              CALL C 
 
              C:   
                      RET 
 
 
              RET 

B:   

A 

A B 

A B C 

A B 

A 

Some machines provide a memory stack as part of the architecture 
      (e.g., VAX) 
 
Sometimes stacks are implemented via software convention  
      (e.g., MIPS) 
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Memory Stacks 

Useful for stacked environments/subroutine call & return even if  
operand stack not part of architecture 

Stacks that Grow Up vs. Stacks that Grow Down: 

a 
b 
c 

0  Little 

inf.  Big 0  Little 

inf.  Big 

Memory 
Addresses 

SP 

Next 
Empty? 

Last 
Full? 

Little --> Big/Last Full 
 
POP:      Read from Mem(SP) 
               Decrement SP 
 
PUSH:    Increment SP 
               Write to Mem(SP) 

grows 
up 

grows 
down 

Little --> Big/Next Empty 
 
POP:      Decrement SP 
               Read from Mem(SP) 
 
PUSH:    Write to Mem(SP) 
               Increment SP 
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Call-Return Linkage: Stack Frames 
FP 

ARGS 

Callee Save 
Registers 

Local Variables 

SP 

Reference args and 
local variables at 
fixed offset 
from FP 

Grows and shrinks during 
expression evaluation 

(old FP,  RA) 

High Mem 

Low Mem 

SP may change during the procedure; FP provides 
a stable reference to local variables, arguments 
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0  zero constant 0 

1  at  reserved for assembler 

2  v0  expression evaluation & 

3  v1  function results 

4  a0  arguments 

5  a1 

6  a2 

7  a3   

8  t0  temporary: caller saves 

. . .   (callee can clobber) 

15  t7 

MIPS: Software conventions for Registers 

16  s0  saved: callee saves 

. . . (caller can clobber) 

23  s7 

24  t8   temporary (cont�d) 

25  t9 

26  k0  reserved for OS kernel 

27  k1 

28  gp  Pointer to global area 

29  sp  Stack pointer 

30  fp  frame pointer 

31  ra  Return Address (HW) 

See Figure 2.18. 
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Example in C: swap 

swap(int v[], int k) 
{ 
   int temp; 
   temp = v[k]; 
   v[k] = v[k+1]; 
   v[k+1] = temp; 
} 
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swap: MIPS 
Using saved registers, swap $a0=v[], $a1=k: 
swap:   
addi  $sp,$sp,-12  ; room for 3 (4-byte) words 
sw  $s0,8($sp) 
sw  $s1,4($sp) 
sw  $s2,0($sp) 
sll  $s1, $a1,2  ; multiply k by 4  (offset) 
addu  $s1, $a0,$s1  ; address of v[k] (base) 
lw  $s0, 0($s1)  ; load v[k]   
lw  $s2, 4($s1)  ; load v[k+1]   
sw  $s2, 0($s1)  ; store v[k+1] into v[k]   
sw  $s0, 4($s1)  ; store old v[k] into v[k+1]   
lw  $s0,8($sp) 
lw  $s1,4($sp) 
lw  $s2,0($sp) 
addi  $sp,$sp,12  ; restore stack pointer 
jr $ra     ; return to caller 
 

swap(int v[], int k) 
{ 
   int temp; 
   temp = v[k]; 
   v[k] = v[k+1]; 
   v[k+1] = temp; 
} 
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swap: MIPS 
Using temporaries ($a0=v[], $a1=k) 
  

swap:   
sll  $t1, $a1,2  ; multiply k by 4   
addu  $t1, $a0,$t1  ; address of v[k]   
lw  $t0, 0($t1)  ; load v[k]   
lw  $t2, 4($t1)  ; load v[k+1]   
sw  $t2, 0($t1)  ; store v[k+1] into v[k]   
sw  $t0, 4($t1)  ; store old v[k] into v[k+1]   
jr $ra    ; return to caller 
 

swap(int v[], int k) 
{ 
   int temp; 
   temp = v[k]; 
   v[k] = v[k+1]; 
   v[k+1] = temp; 
} 
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MIPS Addressing modes 

•  Common modes that 
compilers generate are 
supported: 

–  Immediate 
»  16 bits, in inst 

–  Register 
»  32-bit register contents 

–  Base 
»  Register + constant offset; 

8-, 16- or 32-bit data in 
memory 

–  PC-relative 
»  PC+constant offset 

–  Pseudo-direct 
»  26-bit immediate, shifted 

left 2x and concatenated to 
the 4 MSB bits of the PC 

I-type R-type J-type 

EEL-4713C – Ann Gordon-Ross 

MIPS Addressing: 32-bit constants 

•  All MIPS instructions are 32-bit long 
–  Reason: simpler, faster hardware design: instruction fetch, decode, 

cache 

•  However, often 32-bit immediates are needed 
–  For constants and addresses 

•  Loading a 32-bit constant to register takes 2 
operations 

–  Load upper (a.k.a. most-significant, MSB) 16 bits (�lui� instruction) 
»  Also fills lower 16 bits with zeroes 
»  lui $s0,0x40 results in $s0=0x4000 

–  Load lower 16 bits (�ori� instruction, or immediate) 
»  e.g. ori $s0,$s0,0x80 following lui above results in $s0=0x4080 

EEL-4713C – Ann Gordon-Ross 

MIPS Addressing: targets of jumps/branches 

•  Conditional branches: 
–  16-bit displacement relative to current PC 

»  I-type instruction, see reference chart 
–  �Back� and �forth� jumps supported 

»  Signed displacement; positive and negative 
–  �Short� conditional branches suffice most of the time 

»  E.g. small loops (back); if/then/else (forward) 

•  Jumps: 
–  For �far� locations 
–  26-bit immediate, J-type instruction 
–  Shifted left by two (word-aligned) -> 28 bits 
–  Concatenate 4 MSB from PC -> 32 bits 
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Instructions for synchronization  

•  Multiple cores, multiple threads 
•  Synchronization is necessary to impose ordering 

–  E.g.: a group working on a shared document 
–  Two concurrent computations where there is a dependence 

»  A = (B + C) * (D + E) 
»  The additions can occur concurrently, but the multiplication 

waits for both 

•  Proper instruction set design can help support 
efficient synchronization primitives  
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Synchronization primitives 

•  Typically multiple cores share a single logical main 
memory, but each has its own register set 

–  Or multiple processes in a single core 

•  �Locks� are basic synchronization primitives 
–  Only one process �gets� a lock at a time 

•  Key insight: �atomic� read/write on memory location 
can be used to create locks 

–  Goal: nothing can interpose between read/write to memory location 
–  Cannot be achieved simply using regular loads and stores – why? 

•  Different possible approaches to supporting 
primitives in the ISA 

–  Involving moving data between registers and memory 
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MIPS synchronization primitives 

•  Load linked (ll) 
–  Load a value from memory to a register, like a regular load 
–  But, in addition, hardware keeps track of the address from which it 

was loaded 

•  Store conditional (sc) 
–  Store a value from register to memory succeeds *only if* no 

updates to load linked address 
–  Register value also change: 0 if store failed, 1 if succeeded 
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Example 

•  Goal: build simple �lock� 
–  Value �0� indicates it is free 
–  Value �1� indicates it is not available 
–  E.g. if a group is collaborating on the same document, an individual 

may only make changes if it successfully gets lock=0 

•  Primitive: atomic exchange $s4 and 0($s1) 
–  Attempt to acquire a lock: exchange �1� ($s4) with mem location 

0($s1) 

•  Try: add $t0, $zero, $s4  - $t0 gets $s4 
•     ll $t1, 0($s1)   - load-linked lock addr 
•      sc $t0, 0($s1)   - conditional store �1� 
•     beq $t0,$zero,try   - if failed, $t0=0; retry 
•     add $s4, $zero, $s1  - success: copy 0($s1) 

      to $s4 
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Compiler, assembler, linker 

•  From high-level languages to machine executable program 

C program Java program 
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Compiler 

•  Translates high-level language program (source 
code) into assembly-level 

–  E.g. MIPS assembly; Java bytecodes 

•  Functionality: check syntax, produce correct code, 
perform optimizations (speed, code size) 

–  See 2.11 for more details 
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Assembler 

•  Translates assembly-level program into machine-
level code 

–  �Object� files (.o) 

•  Supports instructions of the processor�s ISA, as well 
as �pseudo-instructions� that facilitate programming 
and code generation 

–  Example: move $t0,$t1 a pseudo-instruction for add $t0,$zero,$t1 
»  Makes it more readable 

–  Other examples: branch on less than (blt), load 32-bit immediate 
»  �unfold� pseudo-instruction into more than 1 real instruction 

–  Cost: one register ($at) reserved to assembler, by convention 
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Linker 

•  Large programs can generate large object files 
•  Multiple developers may be working on various 

modules of a program concurrently 
–  Sensible to partition source code across multiple files 

•  In addition, many commonly used functions are 
available in libraries 

–  E.g. disk I/O, printf, network sockets, … 

•  Linker: takes multiple independent object files and 
composes an �executable file� 
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Loader 

•  Brings executable file from disk to memory for 
execution 

–  Allocates memory for text and data 
–  Copies instructions and input parameters to memory 
–  Initializes registers & stack 
–  Jumps to start routine (C�s �main()�) 

•  Dynamically-linked libraries 
–  Link libraries to executables, �on-demand�, after being loaded 
–  Often the choice for functions common to many applications 
–  Why? 

»  Reduce size of executable files – disk & memory space saved 
»  Many executables can share these libraries 

–  .DLL in Windows, .so (shared-objects) in Linux 
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Miscellaneous MIPS instructions 

•  Break 
–  A breakpoint trap occurs, transfers control  to exception handler 

•  Syscall 
–  A system trap occurs, transfers control to exception handler 

•  coprocessor instructions 
–  Support for floating point: discussed later 

•  TLB instructions 
–  Support for virtual memory: discussed later 

•  restore from exception 
–  Restores previous interrupt mask & kernel/user mode bits into status 

register 
•  load word left/right 

–  Supports misaligned word loads 

•  store word left/right 
–  Supports misaligned word stores 
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Details of the MIPS instruction set 

•  Register zero always has the value zero (even if you try to write it) 
•  Jump and link instruction puts the return address PC+4 into the 

link register 
•  All instructions change all 32 bits of the destination register 

(including lui, lb, lh) and all read all 32 bits of sources (add, sub, 
and, or, …) 

•  Immediate arithmetic and logical instructions are extended as 
follows: 

–  logical immediates are zero extended to 32 bits 
– arithmetic immediates are sign extended to 32 bits 

•  The data loaded by the instructions lb and lh are extended as 
follows: 

–  lbu, lhu are zero extended 
–  lb, lh are sign extended 

•  Overflow can occur in these arithmetic and logical instructions: 
– add, sub, addi 
–  it cannot occur in addu, subu, addiu, and, or, xor, nor, shifts, mult, 

multu, div, divu 
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Reduced and Complex Instruction Sets 

•  MIPS is one example of a RISC-style architecture 
–  Reduced Instruction Set Computer 
–  Designed from scratch in the 80�s 

•  Intel�s �IA-32� architecture (x86) is one example of a 
CISC architecture 

–  Complex Instruction Set 
–  Has been evolving over almost 30 years 
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x86 

•  Example of a CISC ISA 
–  P6 microarchitecture and subsequent implementations use RISC micro-

operations 
•  Descended from 8086 
•  Most widely used general purpose processor family 

–  Steadily gaining ground in high-end systems; 64-bit extensions now from 
AMD and Intel 
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Some history 

•  1978: 8086 launched; 16-bit wide registers; assembly-
compatible with 8-bit 8080 

•  1982: 80286 extends address space to 24 bits (16MB) 
•  1985: 80386 extends address space and registers to 32 bits 

(4GB); paging and protection for O/Ss 
•  1989-95: 80486, Pentium, Pentium Pro; only 4 instructions 

added; RISC-like pipeline 
•  1997-2001: MMX extensions (57 instructions), SSE extensions 

(70 instructions), SSE-2 extensions; 4 32-bit floating-point 
operations in a cycle 

•  2003: AMD extends ISA to support 64-bit addressing, widens 
registers to 64-bit. 

•  2004: Intel supports 64-bit, relabeled EM64T 
•  Ongoing: Intel, AMD extend ISA to support virtual machines 

(Intel VT, AMD Pacifica). Dual-core microprocessors. 
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x86 Registers 

32-bit General purpose registers 
EAX, EBX, ECX, EDX, 
EBP, ESI, EDI, ESP 
  Special uses for certain instructions 
  (e.g. EAX functions as accumulator, 
   ECX as counter for loops) 

16-bit segment registers 
CS, DS, SS, ES, FS, GS 

80-bit floating point stack 
ST(0)-ST(7) 
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X86 operations 

•  Destination for operations can be register or memory 
•  Source can be register, memory or immediate 

•  Data movement: move, push, pop 
•  ALU operations 
•  Control flow: conditional branches, unconditional 

jumps, calls, returns 
•  String instructions: move, compare 

–  MOVS: copies from string source to destination, incrementing ESI 
and EDI; may be repeated 

–  Often slower than equivalent software loop 
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X86 encoding 
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RISC vs. CISC 

•  Long ago, assembly programming was very common 
–  And memories were much smaller 
–  CISC gives more programming power and can reduce code size 

•  Nowadays, most programming is done with high-
level languages and compilers 

–  Compilers do not use all CISC instructions 
–  Simpler is better from an implementation standpoint – more on this 

during class 

•  Support for legacy codes and volume 
–  Push for continued support of CISC ISAs like x86 

•  Compromise approach 
–  Present CISC ISA to the �outside world� 
–  Convert CISC instructions to RISC internally 
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Next lecture 

•  Introduction to the logic design process 
–  Refer to slides and Appendix C, sections C.5-C.6 


