NOTE: This guide is likely to change this weekend as I write the midterm. Check back Monday for a new updated copy.

Appendix C

- The 36 terms on page C-2
- What are the 3 C’s in cache misses?
- The 4 memory hierarchy questions on page C-6
- Calculate average memory access time as in the example on page C-15 and C-16, C-26, C-31, 295,
- 6 Basic cache optimizations – what are they and how do they improve cache performance? Do they always improve performance or does it depend on the benchmark?
 - larger block size to reduce miss rate
 - Larger caches to reduce miss rate
 - Higher associativity to reduce miss rate
 - Multilevel caches to reduce miss rate
 - Giving priority to read misses over writes to reduce miss penalty
 - Avoiding address translation during indexing of the cache to reduce hit time
- Virtual memory
 - What is it?
 - What is its purpose?
 - How does it help a program? How does it hurt a program?
 - What does it mean to have a cache that is virtually indexed virtually tagged or virtually indexed physically tagged? What are the advantages and/or disadvantages of either way
 - What are page tables and what do they mean for virtual memory?
 - How can you speed up address translation?

Chapter 5

- 11 advanced cache optimizations – what are they and how do they improve cache performance? Do they always improve performance or does it depend on the benchmark?
 - Small and simple caches to reduce hit time
 - Way prediction to reduce hit time
 - Trace caches to reduce hit time
 - Pipelined cache access to increase cache bandwidth
 - Nonblocking caches to increase cache bandwidth
 - Multibanked caches to increase cache bandwidth
 - Critical word first and early restart to reduce miss penalty
 - Merging write buffer to reduce miss penalty
 - Compiler optimizations to reduce miss rate
 - Code and data rearrangement
 - Loop interchange
 - Blocking
 - Hardware prefetching of instructions and data to reduce miss penalty or miss rate
 - Compiler controlled prefetching to reduce miss penalty or miss rate
- The table on page 309 summarizes all of the optimization techniques and tells you which aspect it effects
- Memory technology and optimizations
 - How are SRAMs and DRAMs layed out? How do they work? How are they different? What are the advantages and disadvantages to one over the other?
 - Describe how DRAMS are accessed i.e. address is passed in 2 pieces
 - How can locality be used to improve the performance of DRAMS?
 - What is DDR SDRAM?
- Protection: Virtual memory and virtual machines
 - How does virtual memory provide protect? What protections are provided?
 - What architectural support is needed for virtual memory?
 - Why have virtual machines become popular recently?
 - What types of protection does a virtual machine offer?
 - What is a virtual machine?
 - When running a virtual machine, describe how the system is laid out in terms of VM, VMM and Host os?
 - What is a virtual systems virtual machine?
 - What is the virtual machine monitor? What is it responsible for? What are its requirements?
• How do virtual machines assist in managing both software and hardware?
• What is virtualization?
• How does lack of support in the ISS affect virtualization overhead?
• Discuss how different running modes are important for the VM and VMM
• Why can a VM not execute privileged instructions? What are privileged instructions and how are they handled when a VM tries to execute them?
• Why is I/O so difficult in VMs? How does a VM access physical devices on a machine?
• Discuss the issues with virtual memory and virtual machines. What is the added overhead? How can that overhead be minimized?

Chapter 6
• Why has the topic of storage become so popular recently?
• Areal density
• Concept of difference in whole disk read time for random access vs sequential access
• RAID
 o What is the concept of RAID? Why is it important? Why is it useful?
 o Give any possible advantages/disadvantages to using RAID X. If I were to ask you this question, I would say what RAID X does to remind you
 o Know the differences between the following RAID models. The table on page 363 might be helpful
 • RAID 1 - mirrored
 • RAID 4 - parity-based with one parity disk
 • RAID 5 - parity-based with the parity spread across all disks
 • RAID 6 - row and diagonal parity
 o How can RAID 6 recover from multiple disk failures? Work through a recovery problem like in the slides
• Errors, faults and failures
 o Define error, fault and failure and how do those differ?
 o Given an example situation, determine if it is an error, fault or failure
 o What is a latent error?
 o Four fault categories and what they are
 • Hardware faults
 • Design faults
 • Operation faults
 • Environmental faults
 o Three types of faults
 • Transient faults
 • Intermittent faults
 • Permanent faults
 o Why are operator faults so hard to quantify?
• I/O performance, reliability measures and benchmarks
 o Know the basic producer consumer model from page 372
 o Measures of I/O performance:
 • How many devices can you connect
 • Which I/O devices can you connect
 • Response time
 • Throughput
 • Interference of I/O with processor execution
 o Difference between throughput and response time
 o Transaction time is made up of
 • Entry time
 • System response time
 • Think time
 o Transaction processing benchmarks
 • Mostly concerned with I/O rate over data rate
 • TPC benchmark characteristics on page 375
 • Why must the data set scale in size with the throughput?
 • Figure 6.14 – Know the differences in these reconstruction policies.
• Queuing Theory
 o Give a basic definition of queuing theory. What is it useful for? What does it tell us? What types of systems does it measure? Etc
 o What is a system that is in equilibrium?
- Little’s law
- Terms on page 381
- What is the “mean time to complete service of a task when a new task arrives if the server is busy?”
 - Why is this term hard to measure? How is it measured in queuing theory?
 - What is a Poisson distribution?
 - How can a histogram give a characterization of a set of data?
 - What does memoryless mean in the context of distributions?
- Know the assumptions of our model on page 386
- What is an M/M/1 model?
- What is an M/M/m model?
- Be able to solve problems like those in the examples on pages 382, 387,