
 

Chapter 2 Case Studies with Alternate Exercises by Robert P. Colwell

 

�

 

9 

 

Case Study 1: Exploring the Impact of Microarchitectural 
Techniques

 

Concepts illustrated by this case study

 

�

 

Basic Instruction Scheduling, Reordering, Dispatch

 

�

 

Multiple Issue and Hazards

 

�

 

Register Renaming

 

�

 

Out-of-Order and Speculative Execution

 

�

 

Where to Spend Out-of-Order Resources

You are tasked with designing a new processor microarchitecture, and you are
trying to figure out how best to allocate your hardware resources. Which of the
hardware and software techniques you learned in Chapter 2 should you apply?
You have a list of latencies for the functional units and for memory, as well as
some representative code. Your boss has been somewhat vague about the perfor-
mance requirements of your new design, but you know from experience that, all
else being equal, faster is usually better. Start with the basics. Figure 2.35 pro-
vides a sequence of instructions and list of latencies.

 

Latencies beyond single cycle

 

Loop: LD     F2,0(Rx)

 

Memory 

 

LD

 

+4

 

I0:   DIVD   F8,F2,F0

 

Memory 

 

SD

 

+1

 

I1:   MULTD  F2,F6,F2

 

Integer 

 

ADD

 

, 

 

SUB

 

+0

 

I2:   LD     F4,0(Ry)

 

Branches +1

 

I3:   ADDD   F4,F0,F4 ADDD

 

+1

 

I4:   ADDD   F10,F8,F2 MULTD

 

+5

 

I5:   ADDI   Rx,Rx,#8 DIVD

 

+12

 

I6:   ADDI   Ry,Ry,#8

I7:   SD     F4,0(Ry)

I8:   SUB    R20,R4,Rx

I9:   BNZ    R20,Loop

 

Figure 2.35

 

Code and latencies for Exercises 2.1 through 2.6.
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Case Studies with Alternate Exercises

 

2.1

 

[10] <1.8, 2.1, 2.2> What would be the baseline performance (in cycles, per loop
iteration) of the code sequence in Figure 2.35, if no new instruction’s execution
could be initiated until the previous instruction’s execution had completed?
Ignore front-end fetch and decode. Assume for now that execution does not stall
for lack of the next instruction, but only one instruction/cycle can be issued.
Assume the branch is taken, and that there is a one cycle branch delay slot.

 

2.2

 

[10] <1.8, 2.1, 2.2> Think about what latency numbers really mean—they indicate
the number of cycles a given function requires to produce its output, nothing more.
If the overall pipeline stalls for the latency cycles of each functional unit, then you
are at least guaranteed that any pair of back-to-back instructions (a “producer” fol-
lowed by a “consumer”) will execute correctly. But not all instruction pairs have a
producer/consumer relationship. Sometimes two adjacent instructions have nothing
to do with each other. How many cycles would the loop body in the code sequence
in Figure 2.35 require if the pipeline detected true data dependencies and only
stalled on those, rather than blindly stalling everything just because one functional
unit is busy? Show the code with 

 

<stall>

 

 inserted where necessary to accommo-
date stated latencies. (

 

Hint:

 

 An instruction with latency “+2” needs 2 

 

<stall>

 

cycles to be inserted into the code sequence. Think of it this way: a 1-cycle instruc-
tion has latency 1 + 0, meaning zero extra wait states. So latency 1 + 1 implies 1
stall cycle; latency 1 + 

 

N

 

 has 

 

N

 

 extra stall cycles.)

2.3 [15] <2.6, 2.7> Consider a multiple-issue design. Suppose you have two execu-
tion pipelines, each capable of beginning execution of one instruction per cycle,
and enough fetch/decode bandwidth in the front end so that it will not stall your
execution. Assume results can be immediately forwarded from one execution unit
to another, or to itself. Further assume that the only reason an execution pipeline
would stall is to observe a true data dependency. Now how many cycles does the
loop require?

2.4 [10] <2.6, 2.7> In the multiple-issue design of Exercise 2.3, you may have recog-
nized some subtle issues. Even though the two pipelines have the exact same
instruction repertoire, they are not identical nor interchangeable, because there is
an implicit ordering between them that must reflect the ordering of the instruc-
tions in the original program. If instruction N + 1 begins execution in Execution
Pipe 1 at the same time that instruction N begins in Pipe 0, and N + 1 happens to
require a shorter execution latency than N, then N + 1 will complete before N
(even though program ordering would have implied otherwise). Recite at least
two reasons why that could be hazardous and will require special considerations
in the microarchitecture. Give an example of two instructions from the code in
Figure 2.35 that demonstrate this hazard.

2.5 [20] <2.7> Reorder the instructions to improve performance of the code in Figure
2.35. Assume the two-pipe machine in Exercise 2.3, and that the out-of-order
completion issues of Exercise 2.4 have been dealt with successfully. Just worry
about observing true data dependencies and functional unit latencies for now.
How many cycles does your reordered code take?
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2.6 [10/10] <2.1, 2.2> Every cycle that does not initiate a new operation in a pipe is a
lost opportunity, in the sense that your hardware is not “living up to its potential.”

a. [10] <2.1, 2.2> In your reordered code from Exercise 2.5, what fraction of all
cycles, counting both pipes, were wasted (did not initiate a new op)?

b. [10] <2.1, 2.2> Loop unrolling is one standard compiler technique for finding
more parallelism in code, in order to minimize the lost opportunities for per-
formance. Hand-unroll two iterations of the loop in your reordered code from
Exercise 2.5. 

c. [10] <2.1, 2.2> What speedup did you obtain? (For this exercise, just color
the N + 1 iteration’s instructions green to distinguish them from the Nth itera-
tion’s; if you were actually unrolling the loop you would have to reassign reg-
isters to prevent collisions between the iterations.)

2.7 [15] <2.1> Computers spend most of their time in loops, so multiple loop itera-
tions are great places to speculatively find more work to keep CPU resources
busy. Nothing is ever easy, though; the compiler emitted only one copy of that
loop’s code, so even though multiple iterations are handling distinct data, they
will appear to use the same registers. To keep multiple iterations’ register usages
from colliding, we rename their registers. Figure 2.36 shows example code that
we would like our hardware to rename. 

A compiler could have simply unrolled the loop and used different registers to
avoid conflicts, but if we expect our hardware to unroll the loop, it must also do
the register renaming. How? Assume your hardware has a pool of temporary reg-
isters (call them T registers, and assume there are 64 of them, T0 through T63)
that it can substitute for those registers designated by the compiler. This rename
hardware is indexed by the src (source) register designation, and the value in the
table is the T register of the last destination that targeted that register. (Think of
these table values as producers, and the src registers are the consumers; it doesn’t
much matter where the producer puts its result as long as its consumers can find
it.) Consider the code sequence in Figure 2.36. Every time you see a destination
register in the code, substitute the next available T, beginning with T9. Then
update all the src registers accordingly, so that true data dependencies are main-
tained. Show the resulting code. (Hint: See Figure 2.37.)

Loop: LD     F4,0(Rx)

I0:   MULTD  F2,F0,F2

I1:   DIVD   F8,F4,F2

I2:   LD     F4,0(Ry)

I3:   ADDD   F6,F0,F4

I4:   SUBD   F8,F8,F6

I5:   SD     F8,0(Ry)

Figure 2.36 Sample code for register renaming practice.
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2.8 [20] <2.4> Exercise 2.7 explored simple register renaming: when the hardware
register renamer sees a source register, it substitutes the destination T register of
the last instruction to have targeted that source register. When the rename table
sees a destination register, it substitutes the next available T for it. But superscalar
designs need to handle multiple instructions per clock cycle at every stage in the
machine, including the register renaming. A simple scalar processor would there-
fore look up both src register mappings for each instruction, and allocate a new
dest mapping per clock cycle. Superscalar processors must be able to do that as
well, but they must also ensure that any dest-to-src relationships between the two
concurrent instructions are handled correctly. Consider the sample code sequence
in Figure 2.38. Assume that we would like to simultaneously rename the first two
instructions. Further assume that the next two available T registers to be used are
known at the beginning of the clock cycle in which these two instructions are
being renamed. Conceptually, what we want is for the first instruction to do its
rename table lookups, and then update the table per its destination’s T register.
Then the second instruction would do exactly the same thing, and any interin-
struction dependency would thereby be handled correctly. But there’s not enough
time to write that T register designation into the renaming table and then look it
up again for the second instruction, all in the same clock cycle. That register sub-
stitution must instead be done live (in parallel with the register rename table
update). Figure 2.39 shows a circuit diagram, using multiplexers and compara-
tors, that will accomplish the necessary on-the-fly register renaming. Your task is
to show the cycle-by-cycle state of the rename table for every instruction of the
code shown in Figure 2.38. Assume the table starts out with every entry equal to
its index (T0 = 0; T1 = 1, . . .).

2.9 [10] <2.4> If you ever get confused about what a register renamer has to do, go
back to the assembly code you’re executing, and ask yourself what has to happen
for the right result to be obtained. For example, consider a three-way superscalar
machine renaming these three instructions concurrently:

I0:  LD     T9,0(Rx)

I1:  MULTD  T10,F0,T9

. . .

Figure 2.37 Hint: expected output of register renaming.

I0:  SUBD   F1,F2,F3

I1:  ADDD   F4,F1,F2

I2:  MULTD  F6,F4,F1

I3:  DIVD   F0,F2,F6

Figure 2.38 Sample code for superscalar register renaming.
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ADDI R1, R1, R1
ADDI R1, R1, R1
ADDI R1, R1, R1

If the value of R1 starts out as 5, what should its value be when this sequence has
executed?

2.10 [20] <2.4, 2.9> VLIW designers have a few basic choices to make regarding
architectural rules for register use. Suppose a VLIW is designed with self-drain-
ing execution pipelines: once an operation is initiated, its results will appear in
the destination register at most L cycles later (where L is the latency of the opera-
tion). There are never enough registers, so there is a temptation to wring maxi-
mum use out of the registers that exist. Consider Figure 2.40. If loads have a 1 +
2 cycle latency, unroll this loop once, and show how a VLIW capable of two
loads and two adds per cycle can use the minimum number of registers, in the
absence of any pipeline interruptions or stalls. Give an example of an event that,
in the presence of self-draining pipelines, could disrupt this pipelining and yield
wrong results.

2.11 [10/10/10] <2.3> Assume a five-stage single-pipeline microarchitecture (fetch,
decode, execute, memory, write back) and the code in Figure 2.41. All ops are 1
cycle except LW and SW, which are 1 + 2 cycles, and branches, which are 1 + 1
cycles. There is no forwarding. Show the phases of each instruction per clock
cycle for one iteration of the loop.

a. [10] <2.3> How many clock cycles per loop iteration are lost to branch over-
head?

Figure 2.39 Rename table and on-the-fly register substitution logic for superscalar
machines.

Rename table

0
1
2
3
4
5

Next available T register

dst = F4

src1= F1

src2 = F2

dst =F1

src1= F2

src2 = F3

dst =T9

src1= T19

src2 =T38

dst =T10

src1= T9

src2 =T19(Similar mux
for src 2)

Y N

This 9 appears
in the rename
table in next
clock cycle

I1 dst = I2 src?

(As per instr 1)

I1

I2

19

29

. . .

8
9

62
63

. . .

910. . .
21

38
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b. [10] <2.3> Assume a static branch predictor, capable of recognizing a back-
wards branch in the Decode stage. Now how many clock cycles are wasted on
branch overhead?

c. [10] <2.3> Assume a dynamic branch predictor. How many cycles are lost on
a correct prediction?

2.12 Let’s consider what dynamic scheduling might achieve here. Assume a microar-
chitecture as shown in Figure 2.42. Assume that the ALUs can do all arithmetic
ops (MULTD, DIVD, ADDD, ADDI, SUB) and branches, and that the RS can dispatch at
most one operation to each functional unit per cycle (one op to each ALU plus
one memory op to the LD/ST unit).

a. [15] <2.4> Suppose all of the instructions from the sequence in Figure 2.35
are present in the RS, with no renaming having been done. Highlight any
instructions in the code where register renaming would improve performance.
Hint: Look for RAW and WAW hazards. Assume the same functional unit
latencies as in Figure 2.35.

b. [20] <2.4> Suppose the register-renamed version of the code from part (a) is
resident in the RS in clock cycle N, with latencies as given in Figure 2.35.
Show how the RS should dispatch these instructions out-of-order, clock by
clock, to obtain optimal performance on this code. (Assume the same RS
restrictions as in part (a). Also assume that results must be written into the RS

Loop: LW     R4,0(R0) ;   ADDI    R11,R3,#1

      LW     R5,8(R1) ;   ADDI    R20,R0,#1

      <stall>

      ADDI   R10,R4,#1;

      SW     R7,0(R6) ;   SW      R9,8(R8)

      ADDI   R2,R2,#8

      SUB    R4,R3,R2

      BNZ    R4,Loop

Figure 2.40 Sample VLIW code with two adds, two loads, and two stalls.

Loop: LW     R3,0(R0)

      LW     R1,0(R3)

      ADDI   R1,R1,#1

      SUB    R4,R3,R2

      SW     R1,0(R3)

      BNZ    R4, Loop

Figure 2.41 Code loop for Exercise 2.11.
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before they’re available for use; i.e., no bypassing.) How many clock cycles
does the code sequence take?

c. [20] <2.4> Part (b) lets the RS try to optimally schedule these instructions.
But in reality, the whole instruction sequence of interest is not usually present
in the RS. Instead, various events clear the RS, and as a new code sequence
streams in from the decoder, the RS must choose to dispatch what it has. Sup-
pose that the RS is empty. In cycle 0 the first two register-renamed instruc-
tions of this sequence appear in the RS. Assume it takes 1 clock cycle to
dispatch any op, and assume functional unit latencies are as they were for
Exercise 2.2. Further assume that the front end (decoder/register-renamer)
will continue to supply two new instructions per clock cycle. Show the cycle-
by-cycle order of dispatch of the RS. How many clock cycles does this code
sequence require now?

d. [10] <2.10> If you wanted to improve the results of part (c), which would
have helped most: (1) another ALU; (2) another LD/ST unit; (3) full bypass-
ing of ALU results to subsequent operations; (4) cutting the longest latency in
half? What’s the speedup?

e. [20] <2.7> Now let’s consider speculation, the act of fetching, decoding, and
executing beyond one or more conditional branches. Our motivation to do
this is twofold: the dispatch schedule we came up with in part (c) had lots of
nops, and we know computers spend most of their time executing loops
(which implies the branch back to the top of the loop is pretty predictable.)
Loops tell us where to find more work to do; our sparse dispatch schedule
suggests we have opportunities to do some of that work earlier than before. In
part (d) you found the critical path through the loop. Imagine folding a sec-
ond copy of that path onto the schedule you got in part (b). How many more
clock cycles would be required to do two loops’ worth of work (assuming all
instructions are resident in the RS)? (Assume all functional units are fully
pipelined.)

Figure 2.42 An out-of-order microarchitecture.

Reservation
station

ALU 0

Instructions
from decoder

1

2

ALU 1

LD/ST Mem




