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Scheduling
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Recall from Pipelining Review

• Pipeline CPI = Ideal pipeline CPI + Structural
Stalls + Data Hazard Stalls + Control Stalls

– Ideal pipeline CPI: measure of the maximum
performance attainable by the implementation

– Structural hazards: HW cannot support this
combination of instructions

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching
of instructions and decisions about changes in control
flow (branches and jumps)
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Instruction Level Parallelism
• Instruction-Level Parallelism (ILP): overlap the

execution of instructions to improve
performance

• 2 approaches to exploit ILP:
1) Dynamically - Rely on hardware to help discover and exploit

the parallelism dynamically (e.g., Pentium 4, AMD Opteron,
IBM Power) , and

2) Statically - Rely on software technology to find parallelism,
statically at compile-time (e.g., Itanium 2)
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Instruction-Level Parallelism (ILP)
• Basic Block (BB) ILP is quite small

– BB: a straight-line code sequence with no branches in
except to the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25%
=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other
• To obtain substantial performance

enhancements, we must exploit ILP across
multiple basic blocks

• Simplest: loop-level parallelism to exploit
parallelism among iterations of a loop. E.g.,

for (i=1; i<=1000; i=i+1)
       x[i] = x[i] + y[i];
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Loop-Level Parallelism
• Exploit loop-level parallelism to parallelism by “unrolling

loop” either by
1. dynamic via branch prediction or
2. static via loop unrolling by compiler
• Determining instruction dependence is critical to Loop Level

Parallelism
• If 2 instructions are

– parallel, they can execute simultaneously in a pipeline of
arbitrary depth without causing any stalls (assuming no
structural hazards)

– dependent, they are not parallel and must be executed in
order, although they may often be partially overlapped
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• InstrJ is data dependent (aka true dependence) on
InstrI:
1. InstrJ tries to read operand before InstrI writes it

2. or InstrJ is data dependent on InstrK which is dependent on InstrI

• If two instructions are data dependent, they cannot
execute simultaneously or be completely overlapped

• Data dependence in instruction sequence
⇒ data dependence in source code ⇒ effect of
original data dependence must be preserved

• If data dependence caused a hazard in pipeline,
called a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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ILP and Data Dependencies,Hazards
• HW/SW must preserve program order:

order instructions would execute in if executed
sequentially as determined by original source program

– Dependences are a property of programs

• Presence of dependence indicates potential for a
hazard, but actual hazard and length of any stall is
property of the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard
2) determines order in which results must be calculated
3) sets an upper bound on how much parallelism can possibly be

exploited

• HW/SW goal: exploit parallelism by preserving program
order only where it affects the outcome of the program
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• Name dependence: when 2 instructions use same
register or memory location, called a name, but no
flow of data between the instructions associated
with that name; 2 versions of name dependence

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Read (WAR) hazard

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Name Dependence #1: Anti-dependence
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Name Dependence #2: Output dependence
• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Write (WAW) hazard

• Instructions involved in a name dependence can
execute simultaneously if name used in instructions is
changed so instructions do not conflict

– Register renaming resolves name dependence for regs
– Either by compiler or by HW

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7
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Control Dependencies

• Every instruction is control dependent on
some set of branches, and, in general, these
control dependencies must be preserved to
preserve program order
if p1 {
S1;

};
if p2 {
S2;

}
• S1 is control dependent on p1, and S2 is

control dependent on p2 but not on p1.
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Control Dependence Ignored

• Control dependence need not be
preserved
– willing to execute instructions that should not have been

executed, thereby violating the control dependences, if
can do so without affecting correctness of the program

• Instead, 2 properties critical to program
correctness are
1) exception behavior and
2) data flow
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Exception Behavior
• Preserving exception behavior
⇒ any changes in instruction execution order
must not change how exceptions are raised in
program
(⇒ no new exceptions)

• Example:
DADDU R2,R3,R4
BEQZ R2,L1
LW R1,0(R2)

L1:
– (Assume branches not delayed)

• Problem with moving LW before BEQZ?
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Data Flow

• Data flow: actual flow of data values among
instructions that produce results and those that
consume them

– branches make flow dynamic, determine which instruction is
supplier of data

• Example:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R5,R6
L: …
OR R7,R1,R8

• OR depends on DADDU or DSUBU?
Must preserve data flow on execution
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Computers in the News
Who said this? A. Jimmy Carter, 1979

B. Bill Clinton, 1996
C. Al Gore, 2000

D. George W. Bush, 2006

"Again, I'd repeat to you that if we can remain
the most competitive nation in the world, it will
benefit the worker here in America. People
have got to understand, when we talk about
spending your taxpayers' money on research
and development, there is a correlating benefit,
particularly to your children.  See, it takes a
while for  some of the investments that are
being made with government dollars  to come
to market.  I don't know if people realize this,
but the  Internet began as the Defense
Department project to improve military
communications. In other words, we were
trying to figure out how to  better communicate,
here was research money spent, and as a result
of  this sound investment, the Internet came to
be.

The Internet has changed us.  It's changed the
whole world."
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Scheduling
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Software Techniques - Loop Unrolling Example

• This code, add a scalar to a vector:
for (i=1000; i>0; i=i–1)

x[i] = x[i] + s;
• Assume following latencies for all examples

– Ignore delayed branch in these examples

Instruction Instruction Latency stalls between
producing result using result in cycles in cycles
FP ALU op Another FP ALU op    4    3
FP ALU op Store double    3    2
Load double FP ALU op    1    1
Load double Store double    1    0
Integer op Integer op    1    0
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FP Loop: Where are the Hazards?

Loop: L.D F0,0(R1);F0=vector element
 ADD.D F4,F0,F2;add scalar from F2
 S.D 0(R1),F4;store result
 DADDUI R1,R1,-8;decrement pointer 8B (DW)
 BNEZ R1,Loop ;branch R1!=zero
 

•  First translate into MIPS code:
-To simplify, assume 8 is lowest address

Double precision so decrement
by 8 (instead of 4)
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FP Loop - Where are the stalls?

•  9 clock cycles: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: L.D F0,0(R1) ;F0=vector element
 2 stall
 3 ADD.D F4,F0,F2 ;add scalar in F2
 4 stall
 5 stall
 6 S.D 0(R1),F4 ;store result
 7 DADDUI R1,R1,-8 ;decrement pointer 8B (DW)
 8 stall ;assumes can’t forward to branch
 9 BNEZ R1,Loop ;branch R1!=zero

Assumption:
no cache
misses
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Revised FP Loop Minimizing Stalls

 7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop
overhead; How make  faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

 1 Loop: L.D F0,0(R1)
 2 DADDUI R1,R1,-8
 3 ADD.D F4,F0,F2
 4 stall

 5 stall

 6 S.D 8(R1),F4 ;altered offset when move DSUBUI

 7 BNEZ R1,Loop

Swap DADDUI and S.D by changing address of S.D

Move up add to hide stall..

And remove stall

But this is hard for the compiler to do!!
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Unroll Loop Four Times (straightforward
way) - Loop Speedup

 Rewrite loop to
minimize stalls?1 Loop:L.D F0,0(R1)

3 ADD.D F4,F0,F2
6 S.D 0(R1),F4 ;drop DSUBUI & BNEZ
7 L.D F6,-8(R1)
9 ADD.D F8,F6,F2
12 S.D -8(R1),F8 ;drop DSUBUI & BNEZ
13 L.D F10,-16(R1)
15 ADD.D F12,F10,F2
18 S.D -16(R1),F12 ;drop DSUBUI & BNEZ
19 L.D F14,-24(R1)
21 ADD.D F16,F14,F2
24 S.D -24(R1),F16
25 DADDUI R1,R1,#-32 ;alter to 4*8
26 BNEZ R1,LOOP

  27 clock cycles, or 6.75 per iteration (compared to 7)
   (Assumes R1 is multiple of 4)

1 cycle stall
2 cycles stall

But we have made the basic block bigger…more ILP 9/24/07 22

Unrolled Loop That Minimizes Stalls

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 S.D 8(R1),F16 ; 8-32 = -24
14 BNEZ R1,LOOP

 14 clock cycles, or 3.5 per iteration due to
unrolling and rescheduling

Group
instructions to
remove stalls
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Unrolled Loop Detail
• Assumption: Upper bound is known - not realistic
• Suppose it is n, and we would like to unroll the

loop to make k copies of the body
• Solution - 2 consecutive loops:

– 1st executes (n mod k) times and has a body that is the
original loop

– 2nd is the unrolled body surrounded by an outer loop that
iterates (n/k) times

• For large values of n, most of the execution time
will be spent in the unrolled loop
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5 Loop Unrolling Decisions
• Hard for compiler - easy for humans. Compilers must be

sophiticated:
1. Is loop unrolling useful? Are iterations independent
2. Are there enough registers? Need to avoid added data

hazards by using the same registers for different
computations

3. Eliminate the extra test and branch instructions and adjust
the loop termination and iteration code

4. Determine that loads and stores from different iterations
are independent
• Memory analysis to determine that they do not refer to same address

pointers make things more difficult.
5. Schedule the code, preserving any dependences needed

to yield the same result as the original code
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3 Limits to Loop Unrolling - How Much
Benefit Do We Get???
1. Diminishing returns as unrolling gets larger

• Amdahl’s Law

2. Growth in code size
• Increase I-cache miss rate

3. Register pressure: not enough registers for
aggressive unrolling and scheduling
• May need to store live values in memory

• But…..Loop unrolling reduces impact of
branches on pipeline; another way is branch
prediction
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Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
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Static Branch Prediction
• Earlier lecture showed scheduling code around delayed

branch - Where do we get instructions?
• To reorder code around branches, need to predict

branch statically when compile
• Simplest scheme is to predict a branch as taken

– Average misprediction = untaken branch frequency = 34% SPEC

• More accurate
schemes use
profile
information

Integer Floating Point 9/24/07 28

Dynamic Branch Prediction
• Better approach

– Hard to get accurate profile for static prediction

• Why does prediction work?
– Regularities

» Underlying algorithm
» Data that is being operated

– Instruction sequence has redundancies that are artifacts of
way that humans/compilers think about problems

• Is dynamic branch prediction better than static
branch prediction?

– Seems to be
– There are a small number of important branches in programs

which have dynamic behavior
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Dynamic Branch Prediction

• Performance is based on a function of
accuracy and cost of misprediction

• Simple scheme - Branch History Table
– Lower bits of PC address index table of 1-bit values
– Says whether or not branch taken last time
– No address check
– Problem: in a loop, 1-bit BHT will cause two mispredictions

(avg is 9 iteratios before exit):
» End of loop case, when it exits instead of  looping as

before
» First time through loop on next time through code,

when it predicts exit instead of looping
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• How do we make dynamic branch prediction better?
– Solution: 2-bit scheme where change prediction only if get misprediction

twice

• Red: stop, not taken
• Green: go, taken
• Adds history to decision making process
• Simple but quite effective

Dynamic Branch Prediction

T

T NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
TakenT

NT
T

NT
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BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Address conflicts - got branch history of wrong branch when

index the table
• 4096 entry table:

Integer Floating Point 9/24/07 32

Correlated Branch Prediction
• Idea:  correlate prediction based on recent

branch history of previous branches
– record m most recently executed branches as taken or not

taken, and use that pattern to select the proper n-bit branch
history table

• In general, (m,n) predictor means record last m
branches to select between 2m history tables,
each with n-bit counters

– Thus, old 2-bit BHT is a (0,2) predictor

• Global Branch History:  m-bit shift register
keeping T/NT status of last m branches.

• Each entry in table (branch address) has m n-bit
predictors.
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Correlating Branches

(2,2) predictor
– Behavior of recent

branches selects
between four
predictions of next
branch, updating just
that prediction

Branch address

 2-bits per branch predictor

Prediction

2-bit global branch history

4
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Tournament Predictors
• Success of correlating branch prediction lead to

tournament predictors
– Multilevel branch predictor

– Use n-bit saturating counter to choose between competing
predictors - may the best predictor win

• Usual choice between global and local predictors
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Pentium 4 Misprediction Rate
(per 1000 instructions, not per branch)
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≈6% misprediction rate per branch SPECint 
(19% of INT instructions are branch)

≈2% misprediction rate per branch SPECfp
(5% of FP instructions are branch)
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• Branch target calculation is costly and stalls the
instruction fetch.

• BTB stores PCs the same way as caches
• The PC of a branch is sent to the BTB
• When a match is found the corresponding

Predicted PC is returned
• If the branch was predicted taken, instruction

fetch continues at the returned predicted PC

Branch Target Buffers (BTB) Branch Target Buffers
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Dynamic Branch Prediction Summary
• Prediction becoming important part of execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated

with next branch
– Either different branches (GA)
– Or different executions of same branches (PA)

• Tournament predictors take insight to next level, by
using multiple predictors

– usually one based on global information and one based on local
information, and combining them with a selector

– In 2006, tournament predictors using ≈ 30K bits are in processors
like the Power5 and Pentium 4
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Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic

Scheduling
• Tomasulo Algorithm
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Advantages of Dynamic Scheduling
• Dynamic scheduling - hardware rearranges the

instruction execution to reduce stalls while
maintaining data flow and exception behavior

• It handles cases when dependences unknown at
compile time

– Hide cache misses by executing other code while waiting for
the miss to resolve

• No recompiling - It allows code that compiled for
one pipeline to run efficiently on a different
pipeline

• It simplifies the compiler
• Hardware speculation, a technique with

significant performance advantages, builds on
dynamic scheduling
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HW Schemes: Instruction Parallelism
• Key idea: Allow instructions behind stall to proceed

DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

• Enables out-of-order execution and allows out-of-
order completion (e.g., SUBD)

– Issue stage in order (in-order issue)
• Three instruction phases

– begins execution
– completes execution
– in execution - between above 2 stages

• Note: Dynamic execution creates WAR and WAW
hazards and makes exceptions harder

Division is slow, addd must wait but
subd doesn’t have to

9/24/07 43

Dynamic Scheduling Step 1

• In simple pipeline, 1 stage checked both
structural and data hazards:

– Instruction Decode (ID), also called Instruction Issue

• Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:

– Issue—Decode instructions, check for structural hazards

– Read operands—Wait until no data hazards, then read
operands
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A Dynamic Algorithm: Tomasulo’s

• For IBM 360/91 (before caches!)
– ⇒ Long memory latency

• Goal: High Performance without special compilers
– Same code for many different models

• BIG LIMITATION - 4 floating point registers limited
compiler ILP

– Need more effective registers — renaming in hardware!

• Why Study 1966 Computer?
• The descendants of this have flourished!

– Alpha 21264, Pentium 4, AMD Opteron, Power 5, …
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Tomasulo Algorithm
• Control & buffers distributed with Function Units (FU)

– Instead of centralized register file, shift data to a buffer at each
FU

– FU buffers called “reservation stations”; hold pending operands
• Registers in instructions (held in the buffers) replaced by

actual values or a pointer the to reservation stations(RS)
that will eventually hold the value; called  register
renaming ;

– Register file only accessed once, then wait on RS values
– Renaming avoids WAR, WAW hazards
– More reservation stations than registers, so can do optimizations

compilers can’t
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Tomasulo Algorithm

• Results go directly to FU through RS, not through
register file, over Common Data Bus (CDB) that
broadcasts results to all FU RSs

– Avoids RAW hazards by executing an instruction only when its
operands are available

– Register file not a bottleneck
• Load and Stores treated as FUs with RSs as well
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Tomasulo Organization

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation 
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store 
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

9/24/07 48

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)
Vj, Vk: Value of Source operands

– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source
registers (value to be written)

– Note: Qj,Qk=0 => ready
– Store buffers only have Qi for RS producing result

 Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit
will write each register, if one exists. Blank when no
pending instructions that will write that register.
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Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
 If reservation station free (no structural hazard),

control issues instr & sends operands (renames registers).
2. Execute—operate on operands (EX)

 When both operands ready then execute;
 if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting units;

mark reservation station available
Difference between:
– Normal data bus: data + destination (“go to” bus)
– Common data bus: data + source  (“come from” bus)

» Write if matches expected Functional Unit (produces result)
» Does the broadcast

• Example speed:
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /
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Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 Load1 No

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
0 FU

Clock cycle 
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.
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Tomasulo Example Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
1 FU Load1
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Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
2 FU Load2 Load1

Note: Can have multiple loads outstanding
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Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in Reservation
Stations; MULT issued

• Load1 completing; what is waiting for Load1?
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Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2?
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Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)

Add2 No

Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1
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Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6?
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Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it?
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Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

2 Add2 Yes ADDD (M-M) M(A2)

Add3 No

7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
8 FU Mult1 M(A2) Add2 (M-M) Mult2
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Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

1 Add2 Yes ADDD (M-M) M(A2)

Add3 No

6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
9 FU Mult1 M(A2) Add2 (M-M) Mult2
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Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

0 Add2 Yes ADDD (M-M) M(A2)

Add3 No

5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it?
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Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
11 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

• Write result of ADDD here?
• All quick instructions complete in this cycle!
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Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
12 FU Mult1 M(A2) (M-M+M)(M-M) Mult2
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Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
13 FU Mult1 M(A2) (M-M+M)(M-M) Mult2
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Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
14 FU Mult1 M(A2) (M-M+M)(M-M) Mult2
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Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
15 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

• Mult1 (MULTD) completing; what is waiting for it?
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Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
16 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete
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Faster than light computation
(skip a couple of cycles)
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Tomasulo Example Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
55 FU M*F4 M(A2) (M-M+M)(M-M) Mult2
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Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

• Mult2 (DIVD) is completing; what is waiting for it?
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Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56 57

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Result

• Once again: In-order issue, out-of-order execution and
out-of-order completion.
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Why can Tomasulo overlap
iterations of loops?

• Register renaming
– Multiple iterations use different physical destinations for

registers (dynamic loop unrolling).

• Reservation stations
– Permit instruction issue to advance past integer control flow

operations
– Also buffer old values of registers - totally avoiding the WAR

stall

• Other perspective: Tomasulo building data
flow dependency graph on the fly
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Tomasulo’s scheme offers 2 major
advantages
1. Distribution of the hazard detection logic

– distributed reservation stations and the CDB
– Simultaneous instruction release - If multiple

instructions waiting on single result, & each
instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

– Don’t have to wait on centralized register file
»  the units would have to read their results from the

registers when register buses are available

2. Elimination of stalls for WAW and WAR
hazards
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Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264,

IBM PPC 620 in CA:AQA 2/e, but not in silicon!

• Many associative stores (CDB) at high speed
• Performance limited by Common Data Bus

– Each CDB must go to multiple functional units
⇒high capacitance, high wiring density

– Number of functional units that can complete per cycle
limited to one!

» Multiple CDBs ⇒ more FU logic for parallel assoc stores

• Non-precise interrupts!
– We will address this later
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Outline
• Speculation
• Adding Speculation to Tomasulo
• Exceptions
• VLIW
• Increasing instruction bandwidth
• Register Renaming vs. Reorder Buffer
• Value Prediction
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Speculation to greater ILP
• How do we get greater ILP:

– Overcome control dependence by hw speculating outcome of
branches
» Execute program as if guesses were correct

– 2 methods:
» Dynamic scheduling ⇒ only fetches and issues

instructions
» Speculation ⇒ fetch, issue, and execute instructions

as if branch predictions were always correct
• Essentially a data flow execution model:

Operations execute as soon as their operands are
available
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Speculation to greater ILP

• What do we need?
– 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions before
control dependences are resolved

+ ability to undo effects of incorrectly speculated sequence
3. Dynamic scheduling to deal with scheduling of

different combinations of basic blocks
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Outline
• Speculation
• Adding Speculation to Tomasulo
• Exceptions
• VLIW
• Increasing instruction bandwidth
• Register Renaming vs. Reorder Buffer
• Value Prediction
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Adding Speculation to Tomasulo
• Separate execution from finishing

– This additional step called instruction commit

• Update register file/memory only when
instruction is no longer speculative

• Additional requirements - reorder buffer (ROB)
– Set of buffers to hold results of instructions that have

finished execution but have not committed
– Also used to pass results among instructions that may be

speculated
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Reorder Buffer (ROB)
• In Tomasulo’s algorithm, results are written to

the register file after an instruction is finished
• With speculation, the register file is not updated

until the instruction commits
– (we know definitively that the instruction should execute)

• But instruction cannot commit until it is no
longer speculative

• ROB stores results while instruction is still
speculative

– Like reservation stations, ROB is a source of operands
– ROB extends architectural registers like RS
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Reorder Buffer Entry
• ROB contains four fields:
1. Instruction type

• a branch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready



21
NOW Handout Page ‹#›

9/24/07 81

Reorder Buffer operation
• Holds instructions in FIFO order, exactly as issued

– Must have notion of time for in-order commit
• When instructions complete, results placed into ROB

– Supplies operands to other instruction between execution
complete & commit ⇒ more registers like RS

– Tag instructions waiting for results with ROB buffer number instead of RS
• Instructions commit ⇒values at head of ROB placed in registers
• As a result, easy to undo

speculated instructions
on mispredicted branches
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path
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Recall: 4 Steps of Speculative Tomasulo
Algorithm
1. Issue—get instruction from FP Op Queue

 If reservation station and reorder buffer slot free, issue instr & send
operands & reorder buffer no. for destination (this stage sometimes
called “dispatch”)

2. Execution—operate on operands (EX)
 When both operands ready then execute; if not ready, watch CDB for

result; when both in reservation station, execute; checks RAW
(sometimes called “issue”)

3. Write result—finish execution (WB)
 Write on Common Data Bus to all awaiting FUs

& reorder buffer; mark reservation station available.
4. Commit—update register with reorder result

 When instr. at head of reorder buffer & result present, update register
with result (or store to memory) and remove instr from reorder buffer.
Mispredicted branch flushes reorder buffer (sometimes called
“graduation”)

New stuff is in blue
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Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 LD F0,10(R2) N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers
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2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10
F0

ADDD F10,F4,F0
LD F0,10(R2)

N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers
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3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers
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3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N
F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers

5  0+R3

Predicted instruction
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3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

ROB5
 

ST 0(R3),F4
ADDD F0,F4,F6

N
N

F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

Dest

Reorder Buffer

Registers

1 10+R2
5  0+R3

Executed
out-of-
order
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3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[0+R3]
 

ST 0(R3),F4
ADDD F0,F4,F6

Y
N

F4 M[0+R3] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB1
6 ADDD M[0+R3],R(F6)
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3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[0+R3]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[0+R3] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers

Can’t commit done inst. Still spec
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--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP adders FP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???
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Avoiding Memory Hazards
• How does hardware handle out-of-order memory

accesses?
– WAW and WAR hazards through memory are eliminated with

speculation because actual updating of memory occurs in order,
when a store is at head of the ROB, and hence, no earlier loads or
stores can still be pending

– Problem only if we commit out-of-order so we commit sequentially
• RAW hazards through memory are maintained by two

restrictions:
1. not allowing a load to initiate the second step of its execution if any

active ROB entry occupied by a store has a Destination field that
matches the value of the A field of the load, and

2. maintaining the program order for the computation of an effective
address of a load with respect to all earlier stores.

• these restrictions ensure that any load that accesses a
memory location written to by an earlier store cannot
perform the memory access until the store has written the
data
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Outline
• Speculation
• Adding Speculation to Tomasulo
• Exceptions
• VLIW
• Increasing instruction bandwidth
• Register Renaming vs. Reorder Buffer
• Value Prediction
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Exceptions and Interrupts
• IBM 360/91 invented “imprecise interrupts”

– Just a guess
– Computer stopped at this PC; its likely close to this address
– Due to out-of-order commit
– Not so popular with programmers - hard to find bugs

• Technique for both precise interrupts/exceptions and
speculation: in-order completion and in-order commit

– If we speculate and are wrong, need to back up and restart execution
to point at which we predicted incorrectly

– Branch speculation is the same as precise exceptions
• Only recognize exception when ROB is ready to commit

– If a speculated instruction raises an exception, the exception is
recorded in the ROB

– This is why reorder buffers in all new processors
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Getting CPI below 1
• CPI ≥ 1 if issue only 1 instruction every clock cycle
• How do we get CPI <= 1?

– Multiple-issue processors come in 3 flavors:
1. Compiler - statically-scheduled superscalar

processors
• use in-order execution if they are statically scheduled

2. Runtime - dynamically-scheduled superscalar
processors
• out-of-order execution if they are dynamically scheduled

3. Compiler - VLIW (very long instruction word)
processors

• VLIW processors, in contrast, issue a fixed number of instructions
formatted either as one large instruction or as a fixed instruction packet
with the parallelism among instructions explicitly indicated by the
instruction (Intel/HP Itanium)
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VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In IA-64, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– Fixed size instruction like in RISC

» The long instruction word has room for many operations
– All operations in each instruction execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several branches
– Assume compiler can figure out the parallelism and assume that it is

correct - no hardware checks
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Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1  op. 2 branch
L.D F0,0(R1) L.D F6,-8(R1) 1
L.D F10,-16(R1) L.D F14,-24(R1) 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI  R1,R1,#48 8
S.D -0(R1),F28 BNEZ R1,LOOP 9

  Unrolled 7 times to avoid delays - more than before
  7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
  Average: 2.5 ops per clock, 50% efficiency
  Note: Need more registers in VLIW (15 vs. 6 in SS)
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Problems with 1st Generation VLIW

• Increase in code size
– generating enough operations in a straight-line code fragment

requires ambitiously unrolling loops
– whenever VLIW instructions are not full, unused functional

units translate to wasted bits in instruction encoding

• Operated in lock-step; no hazard detection HW
– Assume that “compiler knows best” - no hardware checking
– a stall in any functional unit pipeline caused entire processor

and all operations in the instruction to stall, since all
functional units must be kept synchronized

– Compiler might prediction function units, but caches hard to
predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit

latencies require different versions of the code
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Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• IA-64: instruction set architecture
• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW
• Hardware checks dependencies

(interlocks => binary compatibility over time)
• Predicated execution (select 1 out of 64 1-bit flags)

=> 40% fewer mispredictions?
• Itanium™ was first implementation (2001)

– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process
– First attempt, next would be better….

• Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process
– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3
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Increasing Instruction Fetch Bandwidth

• Predicts next
address, sends it out
before decoding
instruction

• PC of branch sent to
BTB

• When match is
found, Predicted PC
is returned

• If branch predicted
taken, instruction
fetch continues at
Predicted PC

• Allows fetching
back-to-back
instructions

Branch Target Buffer (BTB)
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IF BW: Return Address Predictor
• Small buffer of

return addresses
acts as a stack

• Caches most
recent return
addresses

• Call ⇒ Push a
return address
on stack

• Return ⇒ Pop an
address off stack &
predict as new PC
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More Instruction Fetch Bandwidth

• Integrated branch prediction
– branch predictor is part of instruction fetch unit and is

constantly predicting branches

• Instruction prefetch
– Instruction fetch units prefetch to deliver multiple instruct.

per clock, integrating it with branch prediction

• Instruction memory access and buffering
– Fetching multiple instructions per cycle:

» May require accessing multiple cache blocks (prefetch to
hide cost of crossing cache blocks)

» Provides buffering, acting as on-demand unit to provide
instructions to issue stage as needed and in quantity needed
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Speculation: Register Renaming vs. ROB

• Alternative to ROB is a larger physical set of
registers combined with register renaming

– replace both ROB and reservation stations

• Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

– On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

• Most Out-of-Order processors today use
extended registers with renaming

• Allows binary compatibility

9/24/07 107

Outline
• Speculation
• Adding Speculation to Tomasulo
• Exceptions
• VLIW
• Increasing instruction bandwidth
• Register Renaming vs. Reorder Buffer
• Value Prediction

9/24/07 108

Value Prediction
• Value prediction

– Attempts to predict value produced by instruction
» E.g., Loads a value that changes infrequently

– Value prediction is useful only if it significantly increases ILP
» Hard to get good accuracy ≈ 50%

• Related topic is address aliasing prediction
– Do two registers point to the same memory location
– RAW for load and store or WAW for 2 stores
– Address alias prediction is both more stable and simpler since

need not actually predict the address values, only whether such
values conflict

– Has been used by a few processors
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(Mis) Speculation on Pentium 4
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