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Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
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Why More on Memory Hierarchy?
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Review: 6 Basic Cache Optimizations

• Reducing hit time
1. Giving Reads Priority over Writes

• E.g., Read complete before earlier writes in write buffer
2. Avoiding Address Translation during Cache Indexing

• Reducing Miss Penalty
3. Multilevel Caches

• Reducing Miss Rate
4. Larger Block size (Compulsory misses)
5. Larger Cache size (Capacity misses)
6. Higher Associativity (Conflict misses)
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11 Advanced Cache Optimizations

• Reducing hit time
1. Small and simple caches
2. Way prediction
3. Trace caches

• Increasing cache
bandwidth

1. Pipelined caches
2. Multibanked caches
3. Nonblocking caches

• Reducing Miss Penalty
1. Critical word first
2. Merging write buffers

• Reducing Miss Rate
1. Compiler optimizations

• Reducing miss penalty
or miss rate via
parallelism
1. Hardware prefetching
2. Compiler prefetching
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1. Fast Hit times via
Small and Simple Caches
• Indexing tag memory and then comparing takes time
• ⇒ Small cache - faster to index

– E.g., L1 caches same size for 3 generations of AMD microprocessors:
K6, Athlon, and Opteron (64 KB)

– Also L2 cache small enough to fit on chip with the processor avoids
time penalty of going off chip

• Simple ⇒ direct mapping
– Can overlap tag check with data transmission since no choice

• Access time estimate for 90 nm using CACTI model 4.0
– Median ratios of access time relative to the direct-mapped caches are

1.32, 1.39, and 1.43 for 2-way, 4-way, and 8-way caches
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2. Fast Hit times via  Way Prediction

• How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache? Best of
both worlds!

• Way prediction: keep extra bits in cache to predict the
“way,” or block within the set, of next cache access.

– Multiplexor is set early to select desired block, only 1 tag comparison
performed that clock cycle in parallel with reading the cache data

– Miss ⇒ 1st check other blocks for matches in next clock cycle

• Accuracy ≈ 85%
• Drawback: CPU pipeline is hard if hit time is variable

– Used for instruction caches vs. data caches

Hit Time

Way-Miss Hit Time Miss Penalty
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3. Fast Hit times via  Trace Cache
(Pentium 4 only; and last time?)

• Find more instruction level parallelism?
How avoid translation from x86 to microops?  -
$ them

• Trace cache in Pentium 4 does two things
1. Dynamic traces of the executed instructions

• Very different from memory layout - static sequences of
instructions in cache are determined by layout in memory

» Built-in branch predictor
2. Cache the micro-ops vs. x86 instructions

» Decode/translate from x86 to micro-ops on trace cache miss
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3. Fast Hit times via  Trace Cache
(Pentium 4 only; and last time?)

+ better utilization of large blocks
– Utilization may be poor in large blocks

» don’t exit in middle of block, don’t enter at label in middle of
block

- complicated address mapping since addresses
no longer aligned to power-of-2 multiples of
word size

- instructions may appear multiple times in
multiple dynamic traces due to different branch
outcomes

- Complicated to design
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4: Increasing Cache Bandwidth by
Pipelining

• Pipeline cache access to maintain
bandwidth, but higher latency

• Instruction cache access pipeline stages:
– Pentium - 1 stage
– Pentium Pro through Pentium III  - 2 stages
– Pentium 4 - 4 stages

• Disadvantages
- greater penalty on mispredicted branches because of

longer pipeline
- more clock cycles between the issue of the load and the

use of the data
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5. Increasing Cache Bandwidth:
Non-Blocking Caches

• Non-blocking cache or  lockup-free cache  - Don’t stall, just keep
going

– reduces the miss penalty continuing to service CPU requests allowing data
cache to continue to supply cache hits during a miss

– requires out-of-order execution
– Requires multi-bank memories = more bandwidth

• 2 types
– “hit under miss”
– “hit under multiple miss” or “miss under miss”

» further lower the effective miss penalty by overlapping multiple misses
• Significantly increases the complexity of the cache controller as

there can be multiple outstanding memory accesses
• Pentium Pro allows 4 outstanding memory misses
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6: Increasing Cache Bandwidth via
Multiple Banks

• Rather than treat the cache as a single monolithic
block, divide into independent banks that can support
simultaneous accesses

– E.g.,T1 (“Niagara”) L2 has 4 banks

• Most effective if accesses are spread across banks
• sequential interleaving

– Simple mapping that works well.
– Spread block addresses sequentially across banks
– E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4

is 0; bank 1 has all blocks whose address modulo 4 is 1; …
» Sort of like how set associativity works except now with banks

– Good for instructions and arrays

• More complex methods use hash functions
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7. Reduce Miss Penalty:
Early Restart and Critical Word First

• Don’t wait for full block before restarting CPU
– Early restart — As soon as the requested word of the block arrives,

send it to the CPU and let the CPU continue execution
– Critical Word First — Ask for blocks out of order

» Request the missed word first from memory and send it to the
CPU as soon as it arrives; let the CPU continue execution while
filling the rest of the words in the block

» Long blocks more popular today ⇒ Critical Word 1st Widely used

• No clear notion of benefit because of spatial locality
– May have to wait for next block anyway

block
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8. Merging Write Buffer to
Reduce Miss Penalty

• Write buffer
– allows processor to continue while waiting to write to memory

• Merging
– Check buffer to see if a write can be merged into an existing

write
» I.e. two writes to different words or bytes of the same cache

block
– If so, new data are combined with that entry
– Eliminates writing the same memory location multiple times

• Widely used
– The Sun T1 (Niagara) processor, among many others, uses write

merging
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9. Reducing Misses by Compiler
Optimizations

• Compiler optimizations - hardware designers love it!
• McFarling [1989] reduced caches misses by 75%

on 8KB direct mapped cache, 4 byte blocks in software
• Instructions

– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data - 4 standard algorithms
– Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order

stored in memory
– Loop Fusion: Combine 2 independent loops that have same looping

and some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows
10/26/07 16

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key and
improve spatial locality

Will not conflict if
grouped in structure
together.

If access both in the same
loop, val and key may
conflict in the cache
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Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

• Sequential accesses instead of striding through
memory every 100 words; improved spatial
locality

• Depends a lot on how programming language
stores things in memory

– Column major ordering vs. row major ordering

For fast changing row and
slow changing column
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Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;
improve spatial locality
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Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
 for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};
 x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row  of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

Example - summing
results on rows and
columns - matrix
multiple
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Blocking Example

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

 for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
 for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};
 x[i][j] = x[i][j] + r;
};

• B called Blocking Factor - Should be based on cache
size for best results

• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too?

Soln - N/B loops of short
size of B
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Performance Improvement           

1 1.5 2 2.5 3

compress

cholesky

(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged

arrays

loop

interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

Conclusion - Need to apply
all because you don’t know
which will be the best
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10. Reducing Misses by Hardware
Prefetching of Instructions & Data

• Prefetching relies on having extra
memory bandwidth that can be used
without penalty

• Instruction Prefetching
– Typically, CPU fetches 2 blocks on a miss: the

requested block and the next consecutive block.
– Requested block in instruction cache. prefetched

block in instruction stream buffer
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10. Reducing Misses by Hardware
Prefetching of Instructions & Data

• Data Prefetching
– Pentium 4 can prefetch data into L2 cache from up to 8

streams from 8 different 4 KB pages 
» Can be more aggressive since placing in L2 cache and it is

big enough to accommodate
– Prefetching invoked if 2 successive L2 cache misses to a

page,
if distance between those cache blocks is < 256 bytes

» Calculate stride and fetch data at next stride distance 
• Array striding
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11. Reducing Misses by
Software Prefetching Data

• Data Prefetch
– 2 types

» Load data into register (HP PA-RISC loads)
» Cache Prefetch: load into cache

(MIPS IV, PowerPC, SPARC v. 9)
– Difference between load and prefetch

» Special prefetching instructions cannot cause faults;
a form of speculative execution

• Tradeoff
– Issuing Prefetch Instructions takes time

» Is cost of prefetch issues < savings in reduced misses?
» Higher superscalar reduces difficulty of issue bandwidth

• Assumes we have extra memory cycles
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Compiler Optimization vs. Memory
Hierarchy Search (not in chapter)

• Compiler tries to figure out memory hierarchy
optimizations

– Hard to do, compilers MUST be accurate and thus conservative but
potential savings are large

• New approach: “Auto-tuners”
– First run variations of program on computer to find best

combinations of optimizations (blocking, padding, …) and
algorithms

– Then produce C code to be compiled for that computer and execute
– Gather data and compare to find best configuration
– Typically targeted for a certain class of computers

• Example
– “Auto-tuner” targeted to numerical method

» E.g., PHiPAC (BLAS), Atlas (BLAS),
Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

10/26/07 26
Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking
for finite element problem [Im, Yelick, Vuduc, 2005]
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Best Sparse Blocking for 8 Computers

• All possible column block sizes selected for 8 computers; How could
compiler know which is best?

IBM
Power 3

Intel/HP
Itanium 2

IBM Power 4,
Intel/HP Itanium

Sun Ultra 2,
Sun Ultra 3,

AMD Opteron
Intel

Pentium M8
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10/26/07 28Needs nonblocking cache; in
many CPUs3++

Compiler-controlled
prefetching

Many prefetch instructions;
AMD Opteron prefetches
data

2 instr., 3
data++

Hardware prefetching of
instructions and data

Software is a challenge;
some computers have
compiler option0+

Compiler techniques to reduce
cache misses

Widely used with write
through1+Merging write buffer

Widely used2+
Critical word first and early
restart

Used in L2 of Opteron and
Niagara1+Banked caches

Widely used3++Nonblocking caches

Widely used1+–Pipelined cache access

Used in Pentium 43+Trace caches

Used in Pentium 41+Way-predicting caches

Trivial; widely used0–+Small and simple caches

CommentHW cost/
complexity
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Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
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Main Memory Background

• Performance of Main Memory:
– Latency: Cache Miss Penalty

» Access Time: time between request and word arrives
» Cycle Time: time between requests

– Bandwidth: is a factor of I/O & Large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)
– 1 transistor and 1 capacitor
– Addresses divided into 2 halves (Memory as a 2D matrix):

» RAS or Row Access Strobe
» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor
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Main Memory Deep Background

• Used to be called “Core memory”
• “Out-of-Core”, “In-Core,” “Core Dump”
• Non-volatile, magnetic - stored memory via polarity
• Lost to 4 Kbit DRAM (today using 512Mbit DRAM)
• Access time 750 ns, cycle time 1500-3000 ns

Magnetic ceramic ring
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DRAM logical organization (4 Mbit)

• Address transferred in 2 pieces

Column Decoder

Sense Amps & I/O

Memory Array
(2,048 x 2,048)

A0…A10

…
11 D

Q

Word Line Storage Cell
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Quest for DRAM Performance

1. Fast Page mode
– If subsequent access are to the same row, just read from row

buffer instead of fetching into row buffer again
– Buffers are large - 1024 to 2048 bits

2. Synchronous DRAM (SDRAM)
– DRAM didn’t used to be clocked, hard to synchronize
– Add a clock signal to DRAM interface

3. Double Data Rate (DDR SDRAM)
– Transfer data on both the rising edge and falling edge of the

DRAM clock signal ⇒ doubling the peak data rate
– DDR2 - lower voltage (1.8) and higher clock rate: up to 400 MHz
– DDR3 - drops to 1.5 volts + higher clock rates: up to 800 MHz

• All 3 improved Bandwidth, not Latency
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DRAM standards

• Commodity market for success
– If only one manufacturer, companies will be

reluctant to use DRAM just in case supply
disappears

– Solution, standardize and allow many
companies to make

» I.e. Intel licensed x86 architecture for same
reason
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DRAM name based on Peak Chip Transfers / Sec
DIMM  name based on Peak DIMM MBytes / Sec

PC1280012800DDR3-16001600800DDR3

PC1070010664DDR3-13331333666DDR3

PC85008528DDR3-10661066533DDR3

PC64006400DDR2-800800400DDR2

PC53005336DDR2-667667333DDR2

PC43004264DDR2-533533266DDR2

PC32003200DDR400400200DDR

PC24002400DDR300300150DDR

PC21002128DDR266266133DDR

DIMM
Name

Mbytes/s/
DIMM

DRAM
Name

M transfers
/ second

Clock Rate
(MHz)

Stan-
dard

x 2 x 8
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Need for Error Correction!

• Motivation:
– At first errors were very common

» Failures/time proportional to number of bits!
– As DRAM cells shrink, more vulnerable
– Even in 80’s when memory was scarce, extra bits were

used to detect and correct errors

• Result - designers worked very hard and for
5-8 years went through period in which
failure rate was low enough - dropped EC

– DRAM banks too large now
– Servers always corrected memory systems
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Error Correction!
• Error correction mechanism: add redundancy

through parity bits
– Common configuration: Random error correction

» SEC-DED (single error correct, double error detect)
» One example: 64 data bits + 8 parity bits (11% overhead)

– Really want to handle failures of physical components as well
» Organization is multiple DRAMs/DIMM, multiple DIMMs
» Want to recover from completely failed DRAM and failed

DIMM!
» “Chip kill” handle major failures width of single DRAM chip
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Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
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Introduction to Virtual Machines
• VMs developed in late 1960s

– Large demand for timesharing of computers
» Instead of sharing entire machine, run a virtual machine

and each user gets the illusion of having the machine all
to themselves

– Remained important in mainframe computing over the years
– Largely ignored in single user computers of 1980s and 1990s

• Recently regained popularity due to
– increasing importance of isolation and security in modern

systems (virus and attacks),
– failures in security and reliability of standard operating

systems,
– sharing of a single computer among many unrelated users,
– and the dramatic increases in CPU speed has made virtual

machines more acceptable
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What is a Virtual Machine (VM)?

• Broadest definition
– includes all emulation methods that provide a standard

software interface, such as the Java VM

• More narrow view (we will talk about)
– “(Operating) System Virtual Machines” provide a

complete system level environment at binary ISA
– Create many virtual machines with the same ISA as the

machine they will run on - IBM’s original interpretation
» Can have different ISA but we won’t talk about

those
– E.g., IBM VM/370, VMware ESX Server, and Xen
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What is a Virtual Machine (VM)?

• Virtual memory creates illusion of private
memory and virtual machines create
illusion that VM users have entire
computer to themselves, including a copy
of OS

• Single computer runs multiple VMs, and
can support a multiple, different OSes

– On conventional platform, single OS “owns” all HW
resources

– With a VM, multiple OSes all share HW resources

• Underlying HW platform is called the
host, and its resources are shared among
the guest VMs
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Virtual Machine Monitors (VMMs)
• Virtual machine monitor (VMM) or hypervisor is

software that supports VMs - workhorse of the
system

• VMM determines how to map virtual resources to
physical resources

• Physical resource may be
– time-shared
– Partitioned
– emulated in software

• VMM is much smaller than a traditional OS;
– isolation portion of a VMM is ≈ 10,000 lines of code
– Why is this good?

» Smaller so fewer bugs, thus fewer security holes
» Can even verify formally
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VMM Overhead? Is it fast enough?
• Depends on the workload - difficult to determine
• User-level processor-bound programs (e.g.,

SPEC) have zero-virtualization overhead
– Runs at native speeds since OS rarely invoked

• I/O-intensive workloads ⇒ OS-intensive
⇒ execute many system calls and privileged
instructions
⇒ can result in high virtualization overhead

– For System VMs, goal of architecture and VMM is to run
almost all instructions directly on native hardware

• Can hid overhead if I/O-intensive workload is
also I/O-bound
⇒ low processor utilization since waiting for I/O
⇒ processor virtualization can be hidden
⇒ low virtualization overhead
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Other Uses of VMs

• Focus here on protection
• 2 Other commercially important uses of VMs
1. Managing Software

– Backward compatibility
– Can run legacy OSes, current Oses, and beta releases of future

Oses all at once with no change of system damage

2. Managing Hardware
– Easiest machine to manage only runs 1 application

» VM allows this model without having to replicate hardware
» Thus fewer servers

– Migrate running VM to a different computer
» Can move application without stopping it

• Checkpoint and restart

» Either to balance load or to evacuate from failing HW
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Requirements of a Virtual Machine Monitor

• Need a VM Monitor (VMM) to …
– Presents a SW interface to guest software,
– Isolates state of guests from each other, and
– Protects itself from guest software (including guest OSes)

• Guest software should behave on a VM exactly
as if running on the native HW

• Guest software should not be able to change
allocation of real system resources directly

• Hence, VMM must control everything even
though guest VM and OS currently running is
temporarily using them

– Access to privileged state, Address translation, I/O,
Exceptions and Interrupts, …
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Requirements of a Virtual Machine Monitor

• VMM must be at higher privilege level than
guest VM, which generally run in user mode
⇒ Execution of privileged instructions handled by VMM

• E.g., Timer interrupt: VMM suspends currently
running guest VM, saves its state, handles
interrupt, determine which guest VM to run
next, and then load its state
– Guest VMs that rely on timer interrupt provided with virtual

timer and an emulated timer interrupt by VMM
• Requirements of system virtual machines are

same as paged-virtual memory:
1. At least 2 processor modes, system and user
2. Privileged subset of instructions available only in system

mode, trap if executed in user mode
» All system resources controllable only via these

instructions
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ISA Support for Virtual Machines

• Virtualizable - able to run VM directly on hardware
and only invoke VMM when needed

– Must consider during ISA design, not hard to do
– Since desktop VM is recent, ISAs where not built with support

• VMM must ensure that guest system only interacts
with virtual resources

– If guest OS attempts to access or modify information related to
HW resources via a privileged instruction--for example, reading
or writing the page table pointer--it will trap to the VMM

• VMM must intercept instruction and support a
virtual version of the sensitive information as the
guest OS expects (examples soon)
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Impact of VMs on Virtual Memory

• Guest needs to manage virtual memory but can’t do
that

• VMM separates real and physical memory
– Makes real memory a separate, intermediate level between virtual

memory and physical memory - added level of indirection
– Some use the terms virtual memory, physical memory, and

machine memory to name the 3 levels
– Guest OS maps virtual memory to real memory via its page tables,

and VMM page tables map real memory to physical memory
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Impact of VMs on Virtual Memory

• Two levels of indirection is too slow so
to speed things up
– VMM maintains a shadow page table that maps

directly from the guest virtual address space to
the physical address space of HW

» Rather than pay extra level of indirection on
every memory access

» VMM must trap any attempt by guest OS to
change its page table or to access the page
table pointer
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ISA Support for VMs & Virtual Memory

• IBM has been working on VMs forever and have
been perfecting their system since then

– Works very well now

• In the beginning, IBM 370 architecture added
additional level of indirection that is managed by
the VMM

– Guest OS keeps its page tables as before, so the shadow
pages are unnecessary

– VMM manages the real TLB and has a copy of the contents of
the TLB of each guest VM

– Any instruction that accesses the TLB must trap
– Process ID tags avoid flushing - lower overhead in context

switch
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Impact of I/O on Virtual Memory

• Most difficult part of virtualization
– A lot of devices
– All of them very different
– Share among many VMs
– Device drivers are buggy

• Solution : Give each VM generic versions of each
type of I/O device driver, and let VMM to handle
real I/O

• Mapping hard, depends on device
– Disks partitioned by VMM to create virtual disks for guest VMs
– Must deliver network packets to the correct VM

» Shared in sort time slices
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Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
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Example: Xen VM

• Xen: Open-source System VMM for 80x86 ISA
– Project started at University of Cambridge, GNU license

model
– Growing in popularity

• One way of running a VM is to run with
unmodified version of OS
– Significant wasted effort just to keep guest OS happy

• Xen creators said that wasn’t necessary
– Why not make changes to OS to make virtualization easier

and/or more efficient
– “paravirtualization” - small modifications to guest OS to

simplify virtualization
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Example: Xen VM
3 Examples of paravirtualization in Xen:
1. Use existing address space for TLB

• To avoid flushing TLB when invoke VMM, Xen mapped into upper 64
MB of address space of each VM

2. Guest OS allowed to allocate pages
• Check to make sure protection restrictions are not violated

3. More protection levels
• Xen takes advantage of 4 protection levels available in 80x86

• Most OSes for 80x86 keep everything at privilege levels 0 or at
3.

• Xen VMM runs at the highest privilege level (0)
• Guest OS runs at the next level (1)
• Applications run at the lowest privilege level (3)

• More protection
• Guest OS should have more access privileges than application

running on guest OS
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Xen changes for paravirtualization
• Port of Linux to Xen changed ≈ 3000 lines,

or ≈ 1% of 80x86-specific code
– Does not affect application-binary interfaces of guest OS

• OSes supported in Xen 2.0 - Windows in future release

YesNoFreeBSD 5
YesNoPlan 9
YesYesNetBSD 3.0
YesNoNetBSD 2.0
YesYesLinux 2.6
YesYesLinux 2.4

Runs as guest OSRuns as host OSOS

http://wiki.xensource.com/xenwiki/OSCompatibility
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Xen and I/O - Biggest Challenge

• Driver domains
– Driver associated with each hardware I/O device
– Xen Jargon: “domains” = Virtual Machines

• Driver domains run physical device drivers
– Interrupts by VM for device handled by VMM before being

sent to the driver domain

• Split I/O into 2 pieces
– Simple virtual device drivers in VM
– Communicates with driver domain over a channel to access

physical I/O hardware

• Communication over a dedicated “channel”
– Data sent between guest and driver domains via memory by

page remapping
– Low cost communication because data isn’t copied

anywhere, just page remapping transfers control
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Xen Performance - Overhead of
Virtualization
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Xen Performance, Part II
• HP recreated results, discovered that apps where

I/O bound on NIC and hid overhead of virtualization
– Why?  (next slide)
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Xen Performance, Part III

1. > 2X instructions for guest VM + driver VM
2. > 4X L2 cache misses
3. 12X – 24X Data TLB misses
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Xen Performance, Why?

1. > 2X instructions: Channel communication
• page remapping and page transfer between driver and guest VMs and

due to communication between the 2 VMs over a channel
2. 4X L2 cache misses: Linux uses zero-copy network interface

that depends on ability of NIC to do DMA from different
locations in memory
– Since Xen does not support “gather DMA” in its virtual network

interface, it can’t do true zero-copy in the guest VM
3. 12X – 24X Data TLB misses: 2 Linux optimizations

– Superpages lowers TLB misses versus using 1024 4 KB pages.  Not  in
Xen, used smaller pages

– X86 marks page table entries so they aren’t flushed during context
swith, Not in Xen

• Basically, Xen did not implement things the same as x86
causing a large overhead

• Future Xen may address 2. and 3., but 1. inherent?
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 Protection and Instruction Set Architecture
- What are the problems?
• Why is virtualization so hard to fix?
• Example Problem: 80x86 POPF (pop flags)

instruction
loads flag registers from top of stack in memory
– One such flag is Interrupt Enable (IE)
– In system mode, POPF changes IE
– In user mode, POPF simply changes all flags except IE
– Problem: guest OS runs in user mode inside a VM, so  it

expects to see changed a IE, but it won’t
» Guest OS should not be able to change
» Could cause different results
» Should trap this instruction instead of allowing to

change
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 Protection and Instruction Set Architecture
- What are the problems?
• Overcome:

1. Reduce cost of processor virtualization
» Intel/AMD proposed ISA changes to

reduce this cost
2. Reduce interrupt overhead cost due to

virtualization
3. Reduce interrupt cost by steering interrupts

to proper VM directly without invoking VMM
• 2. and 3. not yet addressed by

Intel/AMD; in the future?
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80x86 VM Challenges

• 18 instructions grouped into 2 types cause
problems for virtualization:
1. Reading control registers in user mode
2. Checking protection but assuming that the operating

system is running at the highest privilege level

• Virtual memory:
– 80x86 TLBs do not support process ID tags

» more expensive for VMM and guest OSes to share
the TLB

– Flushing overhead
» each address space change typically requires a TLB

flush
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Intel/AMD address 80x86 VM Challenges

• Goal is direct execution of VMs on 80x86
– AMD and Intel are trying to solve the same problem but aren’t working

together
• Intel's VT-x

– A new execution mode for running VMs
– An architected definition of the VM state
– Instructions to swap VMs rapidly
– Large set of parameters to select the circumstances

where a VMM must be invoked
– 11 new instructions

• Xen 3.0 plan proposes to use VT-x to run Windows on Xen
• AMD’s Pacifica makes similar proposals

– Plus indirection level in page table like IBM VM 370
• Ironic adding a new mode

– If OS start using mode in kernel, new mode would cause performance
problems for VMM since new mode may be 100 times too slow
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Outline

• 11 Advanced Cache Optimizations
• Memory Technology and DRAM optimizations
• Virtual Machines
• Xen VM: Design and Performance
• AMD Opteron Memory Hierarchy
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AMD Opteron Memory Hierarchy
• 12-stage integer pipeline yields a maximum clock rate of 2.8 GHz

and fastest memory PC3200 DDR SDRAM
• 48-bit virtual and 40-bit physical addresses
• I and D cache: 64 KB, 2-way set associative, 64-B block, LRU
• L2 cache: 1 MB, 16-way, 64-B block, pseudo LRU, not inclusive
• Data and L2 caches use write back, write allocate
• L1 caches are virtually indexed and physically tagged
• L1 I TLB and L1 D TLB: fully associative, 40 entries

– 32 entries for 4 KB pages and 8 for 2 MB or 4 MB pages
– Separate for bandwidth reasons

• L2 I TLB and L2 D TLB: 4-way, 512 entities of 4 KB pages
• Memory controller allows up to 10 cache misses (hit under multiple

misses)
– 8 from D cache and 2 from I cache
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Opteron Memory Hierarchy Performance

• For SPEC2000
– I cache misses per instruction is 0.01% to 0.09%
– D cache misses per instruction are 1.34% to 1.43%
– L2 cache misses per instruction are 0.23% to 0.36%

• Commercial benchmark (“TPC-C-like”)
– I cache misses per instruction is 1.83%  (100X!)
– D cache misses per instruction are 1.39% (≈ same)
– L2 cache misses per instruction are 0.62% (2X to 3X)
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Pentium 4 vs. Opteron Memory Hierarchy

200 MHz x 128 bits200 MHz x 64 bitsMemory

1 stream to L28 streams to L2Prefetch

8-way associative,
2 MB, 128B block

8-way associative,
16 KB, 64B block,
inclusive in L2

Trace Cache (hard)
(8K micro-ops)

Pentium 4 (3.2 GHz*)

16-way associative,
1 MB, 64B block

2-way associative,
64 KB, 64B block,
exclusive to L2

2-way associative,
64 KB, 64B block

Opteron (2.8 GHz*)CPU
Instruction
Cache

L2 cache

Data
Cache

*Clock rate for this comparison in 2005; faster versions existed
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Misses Per Instruction: Pentium 4 vs. Opteron
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D cache:   P4/Opteron

L2 cache: P4/Opteron

SPECint2000 SPECfp2000

↑Opteron better

↓Pentium better

• D cache miss: P4 is 2.3X to 3.4X vs. Opteron
• L2 cache miss: P4 is 0.5X to 1.5X vs. Opteron
• Note: Same ISA, but not same instruction count

2.3X
3.4X

0.5X

1.5X

Opteron always better in D$
L2$ is even


