EEL 5764: Graduate Computer
Architecture

Appendix C — Memory Hierarchy
Review

Ann Gordon-Ross
Electrical and Computer Engineering
University of Florida

http://'www.ann.ece.ufl.edu/

These slides are provided by:
David Patterson
Electrical Engineering and Computer Sciences, University of California, Berkeley

Since 1980, CPU has outpaced DRAM ...

Q. How do architects address this gap?

Performance
(1/1atency)

4000

400

10

A. Put smaller, faster “cache” mewories
between CPU and PRAM.

Create a “mewory hierarchy”. CPU
« 60% per yr
2Xin 1.5 yrs
Gap grew 507 per
year
/ DRAM

= o 9% peryr
2Xin10 yrs

12 Y
o0 o©

Modifications/additions have been made from the originals Year
1977: DRAM faster than microprocessors Levels of the Memory Hierarchy
Capacity Upper Level
TIMING . % Access Time P
S P — Cost Staging .
ot Yo 0 = Apple ][ (1977) o Xfer Uit 4 faster
WHEN AND BY WHOM CPU Registers
MEMOAY 15 ACCESSED - egisters|
e CPU: 1000 ns 190s Bytes 2 o
" pROGRAM Instr. Operands prog./compiler
""" OO o O DRAM: 400 ns Cache I P 1-8 brres
< 1-0.1 cents/bit
e S \ S cache cntl
g T : | Bocke B1eo brtes
procrsson [apone ». =] Main Memory
= M Bytes Memory |
*monang s 4 200ns- 500ns
$.0001-.00001 cents /bit 0s
e B e Disk I Pages 512-4K bytes
G Bytes, 10 ms
(10,000,000 ns) Disk |
oo o con ‘.{IZ‘%}T‘." 109- '1?) cents/biT N user/operator
..... = Steve Files Mbytes
Steve Wozniak [yiseo Tape Larger
l Jobs Q infinite
sec-pin Tape Lower Level
RAM Apple Il 10-
Complement| System
4 4K $1,298.00 9/10/07 4

48K 2,638.00

CS252 S05




Memory Hierarchy: Apple iMac G5
Managed

> Managed Managed by OS,
by compiler by hardware hardware,
\\ application
07 Reg L1 Inst = L1 Data L2 DRAM i
Size 1K | 64K | 32K | 512K | 256M | 80G )
Latency | 3, 3, 1, g8, | 107, iMac G5
C‘I)'Ii‘;l:;s, 06ns| 19ns  19ns  69ns | 55ns [12ms| 1.6 GHz

Goal: lllusion of large, fast, cheap memory

-
Let programs address a memory space that scales =
to the disk size, at a speed that is usually as fast
as register access

P —

iMac’s PowerPC 970: All caches on-chip
L1 (64K Instruction) |  ,

ist

512K
L2

The Principle of Locality

» The Principle of Locality:

— Program access a relatively small portion of the address space at
any instant of time.

» Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

+ Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.

9/10/07

Programs with locality cache well ...

Donald J. Hatfield, Jeanette Gerald: Program Time
Restructuring for Virtual Memory. IBM Systems Journal

CS252 S05

10(3): 168-192 (1971)




Memory Hierarchy: Terminology

: data a%pears in some block in the upper level
(example: Block X)
: the fraction of memory access found in the upper level
: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
: data needs to be retrieve from a block in the
lower level (Block Y
=1 - (Hit Rate)
: Time to replace a block in the upper level +
Time to deliver the block the processor

+ Hit Time << Miss Penalty (500 instructions)
— May be better to recalculate results instead of refetching

Lower Level|
To Processor | Upper Level Memory
Memory
Blk X - i
From Processor D BIk Y
—_—
9/10/07 . 9

Cache Measures

* Hit rate: fraction found in that level
— So high that usually talk about Viss rate
— Miss rate fallacy: as MIPS to CPU performance,
miss rate to average memory access time in memory
+ Average memory-access time
= Hit time + Miss rate x Miss penalty
(ns or clocks)
» Miss penalty: time to replace a block from
lower level, including time to replace in CPU
— access time: time to lower level
= f(latency to lower level)
— transfer time: time to transfer block
=f(BW between upper & lower levels)

9/10/07 10

4 Questions for Memory Hierarchy

* Q1: Where can a block be placed in the upper level?
(Block placement)

* Q2: How is a block found if it is in the upper level?
(Block identification)

* Q3: Which block should be replaced on a miss?
(Block replacement)

* Q4: What happens on a write?
(Write strategy)

9/10/07 11

Q1: Where can a block be placed in
the upper level?

» Block 12 placed in 8 block cache:
— Fully iative, direct mapped, 2-way set associative
— S.A. Mapping = Block Number Modulo Number Sets

Direct Mapped  2-Way Assoc

Full Mapped (15 nod8)=4 (12 mod 4)= 0
01234567 01234567 01234567
Cache
1111111111222222222233
01234567890123456789012345678901
Memory

9/10/07 12

CS252 S05




Q2: How is a block found if it is in the

upper level?
» Tag on each block

— No need to check index or block offset

* Increasing associativity shrinks index, expands

Q3: Which block should be replaced on a
miss?

+ Easy for Direct Mapped
+ Set Associative or Fully Associative:

tag - Random
> — LRU (Least Recently Used)
Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
Block Address Block 16 KB 52% 5.7% 47% 5.3% 4.4% 5.0%
Tag Index | Offset 64KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
9/10/07 13 9/10/07 14
Q4: What happens on a write? Write Buffers for Write-Through Caches §
Write-Through Write-Back Lower
Processor Level
Write data only to the Memory
Data written to cache cache
block
Policy also written to lower- Update lower level HY H
ovel momony o b ol et Holds data awaiting write-through to
of the cache lower level memory
Debug Easy Hard

Do read misses

produce writes? No Yes
Do repeated writes
make it to lower Yes No

level?

Additional option -- let writes to an un-cached address allocate a
new cache line (“write-allocate”).

Q. Why a write buffer ? A. So CPU doesn’t stall

Q. Why a buffer, why not A, Bursts of writes are
just one register ? common,

Q. Are Read After Write A. Yes! Drain buffer before
(RAW) hazards an issue next read, or send read 1%t
for write buffer? after check write buffers.

CS252 S05




5 Basic Cache Optimizations

* Reducing Miss Rate

1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)

3. Higher Associativity (conflict misses)

* Reducing Miss Penalty
4. Multilevel Caches

* Reducing hit time

5. Giving Reads Priority over Writes
E.g., Read complete before earlier writes in write buffer

9/10/07 17

Outline

» Virtual address spaces
+ Page table layout
+ TLB design options

9/10/07

The Limits of Physical Addressing

“Physical-addresses”of memory-ocations

A0-A31 A0-A31
CPU Memory
DO0-D31 DO0-D31

i Data i

All programs share one address space:
The physical address space

Machine language programs must be
aware of the machine organization

No way to prevent a program from
accessing any machine resource

Solution: Add a Layer of Indirection

“Virtual Addresses” “Physical Addresses”

AO-AST Virtoat Physicat AO-ASt
CPU Address Memor
Translation y
DO0-D31 DO0-D31
i Data i

User programs run in an standardized
virtual address space

Address Translation hardware
managed by the operating system (OS)
maps virtual address to physical memory

Hardware supports “modern” OS features:
Protection, Translation, Sharing

CS252 S05




Three Advantages of Virtual Memory

— Program can be given consistent view of memory, even though physical
memory is scrambled

— Makes multithreading reasonable (now used a lot!)

— Only the most important part of program (“Working Set”) must be in
physical memory.

— Contiguous structures (like stacks) use only as much physical memory
as necessary yet still grow later.

— Different processes protected from each other.
— Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).
— Kernel data protected from User programs
— Very important for protection from malicious programs

— Can map same physical page to multiple users
(“Shared memory”)

9/10/07 21

Page tables encode virtual address space

A virtual address space
is divided into blocks
of memory called pages

Virtual Physical
Address Space  Address Space

frame

frame

Alirame A machine | P Siz

frame usually supports 4::(’;"“
1 tes
pages of afew |, szm

Sizes  [2s6Koytes
(MIPS R4000): |!Moxte

4 Mbytes
16 Mbytes

A valid page table entry codes physical
memory “frame” address for the page

Page tables encode virtual address spac

PageTaple  Physical A virtual address space
Ve is divided into blocks
frame of memory called pages
/ frame
$| frame )
frame A machine | "5
usually supports “:l‘(’;"“
1 tes
pages of a few 64 Kbites
virtual .
address sizes 256 Kbytes
(MIPS R4000): |!Moxte
4 Mbytes
0S manages L. 16 Mbytes
he page A page table is indexed by a
able for i
b A virtual address

A valid page table entry codes physical
memory “frame” address for the page

Details of Page Table

Page Table Physical
Memory Space .
Virtual Address
frame “«—12—>
/ frame
$! frame
frame Page Table
age Table 7 1
Base ReQ — :Access
index L&qhﬁi_
virtual Inatoe * '
address tpab%e table located y
in physical offset
memory 12—

Physical Address

+ Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)

+ Virtual memory => treat memory ~ cache for disk

9/10/07 24

CS252 S05




Page tables may not fit in memory! VM and Disk: Page replacement policy

Page Table
A table for 4KB pages for a 32-bit address Dirty bit: page  dirty yised
space has 1M entries P written. : g
Each process needs its own address space! Ve N Used bit:setto [ Tq
/ \ 1 on any reference 44
- o [0
Two-level Page Tables I Setofall pages \4/

32 bit virtual address

31 2221 12 11 0
‘ P1 index | P2 index Fage Offset ‘

\ \ in Memory l' Tail pointer:
Clear the used

bit in the
7/ page table

S
Head pointer e o **

Freelist
| . . . Place pages on fre
Top-level table wired in main memory list if used bit
Subset of 1024 second-level tables in is still clear.
main memory; rest are on disk or Schedule pages Architect’s role: #
unallocated with d_lrty bit st_-!t to t setti d t
be written to disk. support setting dirty Free Pages

and used bits

MIPS Address Translation: How does it work?

“Virtual Addresses™ “Physical Addresses”
A0-A31 P A0-A31
Translation
CPU Look-Aside Memory
Buffer

D0-D31 (TLB) D0-D31
$ Data i hat is the
Translation Look-Aside Buffer (T table of
L mappingy
A small fully-associative of that if

mappings from virtual to physicaladdresses caches?

TLB also contains
protection bits for virtual address

Fast common case: Virtual address is in TLB,
process has permission to read/write it.

CS252 S05



