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Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading
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Limits to ILP
• Study conclusions conflict on amount

available
– Different benchmarks (vectorized Fortran FP vs. integer C

programs)
– Assumptions are made

» Hardware sophistication
» Compiler sophistication

• How much ILP can we expect using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?
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Overcoming Limits - What do we
need??
• Advances in compiler technology +

significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

• However, unlikely such advances when
coupled with realistic hardware will
overcome these limits in near future
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Limits to ILP
• Determine maximum limit on ILP given an ideal/perfect

machine. Look at how each effect maximum ILP
– Assumptions:
1. Register renaming

– infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction
– perfect; no mispredictions

3. Jump prediction
– all jumps perfectly predicted (returns, case statements)

4. Memory-address alias analysis
– addresses known & a load can be moved before a store provided

addresses not equal
5. Perfect caches
6. 1 cycle latency for all instructions (FP *,/)
7. unlimited instructions issued/clock cycle;

– 2 & 3 ⇒ no control dependencies; perfect speculation & an
unbounded buffer of instructions available

– 1&4 eliminates all but RAW
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Upper Limit to ILP: Ideal Machine
(Figure 3.1)
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Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading
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How to Exceed ILP Limits of this study?

• These were practical limits for modern computers
– These are not laws of physics
– Perhaps overcome via research

• Compiler and ISA advances could change results
• Memory aliasing - WAR and WAW hazards

through memory
– eliminated WAW and WAR hazards through register renaming,

but not in memory usage
» Research on predicting address conflicts should help

– Can get conflicts via allocation of stack frames as a called
procedure reuses the memory addresses of a previous frame
on the stack
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Which is better for increasing ILP:
HW vs. SW
• Memory disambiguation:

– HW best
– Compile time pointer analysis is hard

• Speculation:
– HW best when dynamic branch prediction better than compile

time prediction
» Profiling is not good enough

– Exceptions easier for HW
» HW doesn’t need bookkeeping code or compensation

code
– Speculation is very complicated to get right

» Execution is hard enough to get right without speculation
» Speculation leads to many special cases
» Hard to get right

• Scheduling
– SW can look ahead to schedule better, look beyond current PC

• Advantage for HW based:
– Compiler independence: does not require new compiler,

recompilation to run well 9/26/07 22

Performance beyond single thread ILP -
How do we progress?
• Some applications have high natural

parallelism
– Database, searching

• Explicit Thread Level Parallelism or Data
Level Parallelism

– Thread: process with own instructions and data
» Part of parallel program (same address space) or it

may be an independent program
» Each thread has all the state (instructions, data, PC,

register state, and so on) necessary to allow it to
execute

– Data Level Parallelism: Perform identical operations on
data, and lots of data

» Graphics processing
» ATI - 130,000+ threads
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Thread Level Parallelism (TLP)

• ILP vs. TLP
– ILP exploits implicit parallel operations within a loop or

straight-line code segment
– TLP explicitly represented by the use of multiple

threads of execution that are inherently parallel

• TLP Goal: Use multiple instruction
streams to improve
– Throughput of computers that run many

programs
– Execution time of multi-threaded programs

• TLP could be more cost-effective to
exploit than ILP
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Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading
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New Approach: Mulithreaded Execution
• Attempt better performance while reusing a

lot of existing hardware
• Multithreading: multiple threads to share the

functional units of 1 processor via
overlapping

• To support:
– duplicate independent state of each thread

» a separate copy of register file
» a separate PC
» a separate page table (if separate programs)

– Memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch
» Needs to be faster than full process switch ≈ 100s to

1000s of clocks
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New Approach: Mulithreaded Execution
• When to switch?

– Fine grained
» Alternate instruction per thread - switch on each clock

cycle
– Coarse grained

» When a thread is stalled, perhaps for a cache miss,
another thread can be executed

• Both switching methods allow stalls to be
hidden by doing work for another thread
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Fine-Grained Multithreading
• Switches between threads on each instruction,

causing the execution of multiple threads to be
interleaved

• CPU must be able to switch threads every clock
• Usually done in a round-robin fashion, skipping

any stalled threads
• Advantage

– can hide both short and long stalls, since instructions from
other threads executed when one thread stalls

• Disadvantage
– slows down execution of individual threads, since a thread

ready to execute without stalls will be delayed by instructions
from other threads

• Used on Sun’s Niagara
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Course-Grained Multithreading
• More conservative

– Switches threads only on costly stalls, such as L2 cache misses
• Advantages

– Relieves need to have very fast thread-switching
– Easier to build
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly
stall

• Disadvantage
– hard to overcome throughput losses from shorter stalls, due to

pipeline start-up costs
» On switch, pipeline is emptied. Need to refill for new thread

– Doesn’t switch on short stalls, can’t hide those
• Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400
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For most apps, most execution units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.
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Do both ILP and TLP?
• TLP and ILP exploit two different kinds of

parallel structure in a program
• Could a processor oriented for ILP be

used to exploit TLP?
– functional units are often idle in data path designed for

ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?
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Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading

Simultaneous Multi-threading ...
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Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT)
– dynamically scheduled processor already has many HW mechanisms

to support multithreading
» Large set of virtual registers that can be used to hold the register

sets of independent threads
» Register renaming provides unique register identifiers, so

instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

» Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

– Added support
» Different threads can be scheduled together on same clock cycle
» Per thread renaming table
» Separate PCs
» Independent commitment can be supported by logically keeping

a separate reorder buffer for each thread
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Design Challenges in SMT
• Impact of fine-grained scheduling on single thread

performance?
– SMT makes sense only with fine-grained implementation
– A preferred thread approach sacrifices neither throughput nor

single-thread performance?
– Unfortunately when a preferred thread stalls, the processor is

likely to sacrifice some throughput,
• Larger register file needed to hold multiple

contexts
• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance
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And in conclusion …
• Limits to ILP (power efficiency, compilers,

dependencies …) seem to limit to 3 to 6 issue for
practical options

• Explicitly parallel (Data level parallelism or
Thread level parallelism) is next step to
performance

• Coarse grain vs. Fine grained multihreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained
multithreading based on OOO superscalar
microarchitecture

– Instead of replicating registers, reuse rename registers
• Balance of ILP and TLP decided in marketplace


