
1
NOW Handout Page ‹#›

EEL 5764 Graduate Computer
Architecture

 Chapter 3 – Limits to ILP and
Simultaneous Multithreading

These slides are provided by:
David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross
Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

9/26/07 2

Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading

9/26/07 3

Limits to ILP
• Study conclusions conflict on amount

available
– Different benchmarks (vectorized Fortran FP vs. integer C

programs)
– Assumptions are made

» Hardware sophistication
» Compiler sophistication

• How much ILP can we expect using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

9/26/07 4

Overcoming Limits - What do we
need??
• Advances in compiler technology +

significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

• However, unlikely such advances when
coupled with realistic hardware will
overcome these limits in near future

2
NOW Handout Page ‹#›

9/26/07 5

Limits to ILP
• Determine maximum limit on ILP given an ideal/perfect

machine. Look at how each effect maximum ILP
– Assumptions:
1. Register renaming

– infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction
– perfect; no mispredictions

3. Jump prediction
– all jumps perfectly predicted (returns, case statements)

4. Memory-address alias analysis
– addresses known & a load can be moved before a store provided

addresses not equal
5. Perfect caches
6. 1 cycle latency for all instructions (FP *,/)
7. unlimited instructions issued/clock cycle;

– 2 & 3 ⇒ no control dependencies; perfect speculation & an
unbounded buffer of instructions available

– 1&4 eliminates all but RAW
9/26/07 6

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectCache

2% to 6%
misprediction
(Tournament
Branch Predictor)

PerfectBranch Prediction

??PerfectMemory Alias
Analysis

4InfiniteInstructions Issued
per clock

200InfiniteInstruction Window
Size

48 integer +
40 Fl. Pt.

InfiniteRenaming
Registers

Power 5Model

Limits to ILP HW Model comparison
Comparison of two machines

9/26/07 7

Upper Limit to ILP: Ideal Machine
(Figure 3.1)

Programs

In
s
tr

u
c
ti

o
n

Is
s
u
e
s

p
e
r

c
y
c
le

0

20

40

60

80

100

120

140

160

gcc esp resso l i fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Everything infinite or perfect

9/26/07 8

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory Alias

Branch
Prediction

Renaming
Registers

(Vary) Instruction
Window Size

Instructions
Issued per clock

4InfiniteInfinite

200InfiniteInfinite, 2K,
512, 128, 32

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew
Model

Limits to ILP HW Model comparison

3
NOW Handout Page ‹#›

9/26/07 9

55
63

18

75

119

150

36
41

15

61 59 60

10
15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
s
tr

u
c
ti

o
n

s
 P

e
r

C
lo

c
k

Inf inite 2048 512 128 32

More Realistic HW: Window Impact
Figure 3.2

Change from Infinite
window 2048, 512, 128, 32 FP: 9 - 150

Integer: 8 - 63

IP
C

Realistic

9/26/07 10

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

(Vary)
Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect vs. 8K
Tournament vs.
512 2-bit vs.
profile vs. none

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew Model

Limits to ILP HW Model comparison

9/26/07 11

35

41

16

61

58

60

9

12

10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

0

10

20

30

40

50

60

gcc espresso l i fpppp doducd tomcatv

P r og r am

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Figure 3.3

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12

IP
C

9/26/07 12

Branch Misprediction Rates

1%

5%

14%
12%

14%
12%

1%

16%
18%

23%

18%

30%

0%

3%
2% 2%

4%
6%

0%

5%

10%

15%

20%

25%

30%

35%

tomcatv doduc fpppp li espresso gcc

M
is

p
re

d
ic

ti
o

n
 R

a
te

Profile-based 2-bit counter Tournament

4
NOW Handout Page ‹#›

9/26/07 13

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

(Vary)
Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect

Tournament Branch
Predictor

Perfect8K 2-bit

48 integer +
40 Fl. Pt.

InfiniteInfinite v. 256,
128, 64, 32, none

Power 5ModelNew Model

Limits to ILP HW Model comparison

9/26/07 14

11

15

12

29

54

10

15

12

49

16

10

13
12

35

15

44

9
10

11

20

11

28

5 5
6 5 5

7

4 4
5

4
5 5

59

45

0

10

20

30

40

50

60

70

gcc espresso l i fpppp doducd tomcatv

P r og r am

Infinite 256 128 64 32 None

More Realistic HW:
Renaming Register Impact (N int + N fp)
Figure 3.5

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

9/26/07 15

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

(Vary)
Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect v. Stack
v. Inspect v.
none

TournamentPerfect8K 2-bit

48 integer +
40 Fl. Pt.

Infinite256 Int + 256 FP

Power 5ModelNew Model

Limits to ILP HW Model comparison

9/26/07 16

P rog r am

In
s
tr

u
c
ti

o
n

is
s
u
e
s

p
e
r

c
y
c
le

0

5

10

15

20

25

30

35

40

45

50

gcc espresso l i fpppp doducd tomcatv

10

15

12

49

16

45

7 7

9

49

16

4
5 4 4

6
5

3

5

3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW:
Memory Address Alias Impact
Figure 3.6

NoneGlobal/Stack perf;
(heap not considered)

Perfect Inspec.
Assem.

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

5
NOW Handout Page ‹#›

9/26/07 17

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64 (no
restrictions)

200InfiniteInfinite vs. 256,
128, 64, 32

PerfectPerfectHW
disambiguation

TournamentPerfect1K 2-bit

48 integer +
40 Fl. Pt.

Infinite64 Int + 64 FP

Power 5ModelNew Model

Limits to ILP HW Model comparison

9/26/07 18

P rog r am

In
s
tr

u
c
ti

o
n

is
s
u
e
s

p
e
r

c
y
c
le

0

10

20

30

40

50

60

gcc expresso l i fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8
9

14

9

14

6 6 6

8
7

9

4 4 4
5

4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW: Window Impact
(Figure 3.7)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

9/26/07 19

Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading

9/26/07 20

How to Exceed ILP Limits of this study?

• These were practical limits for modern computers
– These are not laws of physics
– Perhaps overcome via research

• Compiler and ISA advances could change results
• Memory aliasing - WAR and WAW hazards

through memory
– eliminated WAW and WAR hazards through register renaming,

but not in memory usage
» Research on predicting address conflicts should help

– Can get conflicts via allocation of stack frames as a called
procedure reuses the memory addresses of a previous frame
on the stack

6
NOW Handout Page ‹#›

9/26/07 21

Which is better for increasing ILP:
HW vs. SW
• Memory disambiguation:

– HW best
– Compile time pointer analysis is hard

• Speculation:
– HW best when dynamic branch prediction better than compile

time prediction
» Profiling is not good enough

– Exceptions easier for HW
» HW doesn’t need bookkeeping code or compensation

code
– Speculation is very complicated to get right

» Execution is hard enough to get right without speculation
» Speculation leads to many special cases
» Hard to get right

• Scheduling
– SW can look ahead to schedule better, look beyond current PC

• Advantage for HW based:
– Compiler independence: does not require new compiler,

recompilation to run well 9/26/07 22

Performance beyond single thread ILP -
How do we progress?
• Some applications have high natural

parallelism
– Database, searching

• Explicit Thread Level Parallelism or Data
Level Parallelism

– Thread: process with own instructions and data
» Part of parallel program (same address space) or it

may be an independent program
» Each thread has all the state (instructions, data, PC,

register state, and so on) necessary to allow it to
execute

– Data Level Parallelism: Perform identical operations on
data, and lots of data

» Graphics processing
» ATI - 130,000+ threads

9/26/07 23

Thread Level Parallelism (TLP)

• ILP vs. TLP
– ILP exploits implicit parallel operations within a loop or

straight-line code segment
– TLP explicitly represented by the use of multiple

threads of execution that are inherently parallel

• TLP Goal: Use multiple instruction
streams to improve
– Throughput of computers that run many

programs
– Execution time of multi-threaded programs

• TLP could be more cost-effective to
exploit than ILP

9/26/07 24

Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading

7
NOW Handout Page ‹#›

9/26/07 25

New Approach: Mulithreaded Execution
• Attempt better performance while reusing a

lot of existing hardware
• Multithreading: multiple threads to share the

functional units of 1 processor via
overlapping

• To support:
– duplicate independent state of each thread

» a separate copy of register file
» a separate PC
» a separate page table (if separate programs)

– Memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch
» Needs to be faster than full process switch ≈ 100s to

1000s of clocks
9/26/07 26

New Approach: Mulithreaded Execution
• When to switch?

– Fine grained
» Alternate instruction per thread - switch on each clock

cycle
– Coarse grained

» When a thread is stalled, perhaps for a cache miss,
another thread can be executed

• Both switching methods allow stalls to be
hidden by doing work for another thread

9/26/07 27

Fine-Grained Multithreading
• Switches between threads on each instruction,

causing the execution of multiple threads to be
interleaved

• CPU must be able to switch threads every clock
• Usually done in a round-robin fashion, skipping

any stalled threads
• Advantage

– can hide both short and long stalls, since instructions from
other threads executed when one thread stalls

• Disadvantage
– slows down execution of individual threads, since a thread

ready to execute without stalls will be delayed by instructions
from other threads

• Used on Sun’s Niagara

9/26/07 28

Course-Grained Multithreading
• More conservative

– Switches threads only on costly stalls, such as L2 cache misses
• Advantages

– Relieves need to have very fast thread-switching
– Easier to build
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly
stall

• Disadvantage
– hard to overcome throughput losses from shorter stalls, due to

pipeline start-up costs
» On switch, pipeline is emptied. Need to refill for new thread

– Doesn’t switch on short stalls, can’t hide those
• Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

8
NOW Handout Page ‹#›

For most apps, most execution units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.

9/26/07 30

Do both ILP and TLP?
• TLP and ILP exploit two different kinds of

parallel structure in a program
• Could a processor oriented for ILP be

used to exploit TLP?
– functional units are often idle in data path designed for

ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

9/26/07 31

Outline
• Limits to ILP
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

Low Utilization

More Utilization

9
NOW Handout Page ‹#›

9/26/07 33

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT)
– dynamically scheduled processor already has many HW mechanisms

to support multithreading
» Large set of virtual registers that can be used to hold the register

sets of independent threads
» Register renaming provides unique register identifiers, so

instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

» Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

– Added support
» Different threads can be scheduled together on same clock cycle
» Per thread renaming table
» Separate PCs
» Independent commitment can be supported by logically keeping

a separate reorder buffer for each thread

9/26/07 34

Multithreaded Categories

Ti
m

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

9/26/07 35

Design Challenges in SMT
• Impact of fine-grained scheduling on single thread

performance?
– SMT makes sense only with fine-grained implementation
– A preferred thread approach sacrifices neither throughput nor

single-thread performance?
– Unfortunately when a preferred thread stalls, the processor is

likely to sacrifice some throughput,
• Larger register file needed to hold multiple

contexts
• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

9/26/07 36

And in conclusion …
• Limits to ILP (power efficiency, compilers,

dependencies …) seem to limit to 3 to 6 issue for
practical options

• Explicitly parallel (Data level parallelism or
Thread level parallelism) is next step to
performance

• Coarse grain vs. Fine grained multihreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained
multithreading based on OOO superscalar
microarchitecture

– Instead of replicating registers, reuse rename registers
• Balance of ILP and TLP decided in marketplace

