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EEL 5764: Graduate Computer Architecture

 Appendix A - Pipelining Review

These slides are provided by:
David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross
Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/
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What is Pipelining?
• Overlapping execution to produce faster results

– Washing and drying dishes
– Washing and drying laundry
– Automobile assembly line
– Chipotle, Quiznos, etc

• Pipelining in computer architecture
– Multiple instructions are overlapped in execution
– Exploits parallelism
– Not visible to programmer

• Each stage is a pipeline “cycle”
– Each stage happens simultaneously so results are produced

only as fast as the longest pipeline cycle
– Determines clock cycle time
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Outline
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
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A "Typical" RISC ISA (Load/Store)

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero)
• ALU instructions

– 3-address, reg-reg arithmetic instruction
– 2-address, reg-im arithmetic instruction

• Single address mode for load/store:
base + displacement

– no indirection

• Simple branch conditions
• Delayed branch
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Example: MIPS (- MIPS)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Datapath vs Control (FSM+D)

• Datapath: Storage, FU, interconnect sufficient to perform the
desired functions

– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data
path

– Based on desired function and signals

Datapath Controller

Control Points

signals
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Approaching an ISA
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware
supported data types, named storage, addressing modes,
sequencing

• Meaning of each instruction is described by RTL
on architected registers and memory

• Given technology constraints assemble adequate
datapath

– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MBR, …)
– Interconnect to move information among regs and FUs

• Implement controller (Finite State Machine (FSM))
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Outline
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
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5 Steps of MIPS Datapath
Figure A.2, Page A-8
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5 Steps of MIPS Datapath
Figure A.3, Page A-9
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IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
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Inst. Set Processor Controller

IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR
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Visualizing Pipelining
Figure A.2, Page A-8
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Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior instruction still
in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow (branches
and jumps).
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One Memory Port/Structural Hazards
Figure A.4, Page A-14
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One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)
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How do you “bubble” the pipe? 9/5/07 16

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle

 TimeCycle
  

CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal
  Speedup !

+

!
=

pipelined

dunpipeline

 TimeCycle

 TimeCycle
  

CPI stall Pipeline  1

depth Pipeline
  Speedup !

+
=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Example: Dual-port vs. Single-port
• Machine A: Dual ported memory (“Harvard Architecture”)
• Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
                  = Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
                    = (Pipeline Depth/1.4) x  1.05
                    = 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB
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• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler
nomenclature).  This hazard results from an actual
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
–  All instructions take 5 stages, and
–  Reads are always in stage 2, and
–  Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards



CS252 S05 6

9/5/07 21

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
–  All instructions take 5 stages, and
–  Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19
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xor r10,r1,r11
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HW Change for Forwarding
Figure A.23, Page A-37
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What circuit detects and resolves this hazard?
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Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20
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Time (clock cycles)
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Data Hazard Even with Forwarding
Figure A.9, Page A-21
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Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)
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How is this detected?
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
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Outline
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion
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Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

• If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n
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Scheduling Branch Delay Slots (Fig A.14)

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3
if $1=0 then

delay slot

add  $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3
if $1=0 then

sub $4,$5,$6

add  $1,$2,$3
if $1=0 then

sub $4,$5,$6
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Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to
deeper pipelines and multiple issue, the branch
delay grows and need more than one delay slot

– Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches
relatively cheaper
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Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme  penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency!Branch penalty


