
CS252 S05 1

EEL 5764: Graduate Computer Architecture

 Appendix A - Pipelining Review

These slides are provided by:
David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross
Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

9/5/07 2

What is Pipelining?
• Overlapping execution to produce faster results

– Washing and drying dishes
– Washing and drying laundry
– Automobile assembly line
– Chipotle, Quiznos, etc

• Pipelining in computer architecture
– Multiple instructions are overlapped in execution
– Exploits parallelism
– Not visible to programmer

• Each stage is a pipeline “cycle”
– Each stage happens simultaneously so results are produced

only as fast as the longest pipeline cycle
– Determines clock cycle time

9/5/07 3

Outline
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts

9/5/07 4

A "Typical" RISC ISA (Load/Store)

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero)
• ALU instructions

– 3-address, reg-reg arithmetic instruction
– 2-address, reg-im arithmetic instruction

• Single address mode for load/store:
base + displacement

– no indirection

• Simple branch conditions
• Delayed branch

CS252 S05 2

9/5/07 5

Example: MIPS (- MIPS)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

9/5/07 6

Datapath vs Control (FSM+D)

• Datapath: Storage, FU, interconnect sufficient to perform the
desired functions

– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data
path

– Based on desired function and signals

Datapath Controller

Control Points

signals

9/5/07 7

Approaching an ISA
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware
supported data types, named storage, addressing modes,
sequencing

• Meaning of each instruction is described by RTL
on architected registers and memory

• Given technology constraints assemble adequate
datapath

– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MBR, …)
– Interconnect to move information among regs and FUs

• Implement controller (Finite State Machine (FSM))

9/5/07 8

Outline
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts

CS252 S05 3

9/5/07 9

5 Steps of MIPS Datapath
Figure A.2, Page A-8

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

9/5/07 10

5 Steps of MIPS Datapath
Figure A.3, Page A-9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt

9/5/07 11

Inst. Set Processor Controller

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)

PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR

9/5/07 12

Visualizing Pipelining
Figure A.2, Page A-8

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

CS252 S05 4

9/5/07 13

Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior instruction still
in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow (branches
and jumps).

9/5/07 14

One Memory Port/Structural Hazards
Figure A.4, Page A-14

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

9/5/07 15

One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe? 9/5/07 16

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle

 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal
 Speedup !

+

!
=

pipelined

dunpipeline

 TimeCycle

 TimeCycle

CPI stall Pipeline 1

depth Pipeline
 Speedup !

+
=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, CPI = 1:

CS252 S05 5

9/5/07 17

Example: Dual-port vs. Single-port
• Machine A: Dual ported memory (“Harvard Architecture”)
• Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
 = Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
 = (Pipeline Depth/1.4) x 1.05
 = 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

9/5/07 18

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB

9/5/07 19

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

9/5/07 20

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

CS252 S05 6

9/5/07 21

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

9/5/07 22

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

9/5/07 23

HW Change for Forwarding
Figure A.23, Page A-37

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers
NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?
9/5/07 24

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

CS252 S05 7

9/5/07 25

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-21

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

9/5/07 26

Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch A
LU DMemBubble Reg

How is this detected?

9/5/07 27

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.
9/5/07 28

Outline
• MIPS – An ISA for Pipelining
• 5 stage pipelining
• Structural and Data Hazards
• Forwarding
• Branch Schemes
• Exceptions and Interrupts
• Conclusion

CS252 S05 8

9/5/07 29

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
9/5/07 30

Branch Stall Impact

• If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

9/5/07 31

A
dder

IF/ID
Pipelined MIPS Datapath
Figure A.24, page A-38

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
SEQ PC

RD RD RD W
B

D
at

a

• Interplay of instruction set design and cycle time.

Next PC
A

ddress

RS1

RS2

Imm

M
U

X

ID
/EX

9/5/07 32

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% MIPS branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average
– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

CS252 S05 9

9/5/07 33

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– MIPS uses this

Branch delay of length n

9/5/07 34

Scheduling Branch Delay Slots (Fig A.14)

• A is the best choice, fills delay slot & reduces instruction count (IC)
• In B, the sub instruction may need to be copied, increasing IC
• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

9/5/07 35

Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to
deeper pipelines and multiple issue, the branch
delay grows and need more than one delay slot

– Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches
relatively cheaper

9/5/07 36

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0
Predict taken 1 1.20 4.2 1.33
Predict not taken 1 1.14 4.4 1.40
Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency!Branch penalty

