Midterm 2 Study Guide

Chapter 4

• Taxonomy of parallel architectures
 o What are SISD, SIMD, MISD, and MIMD?
• Amdahl’s law and speedup equations
 o Give a percentage of a program that is parallelizable, calculate the speedup obtained using different numbers of CPUs
• Uniform memory access vs. non-uniform memory access
• Centralized shared memory model vs distributed memory model
 o Advantages and disadvantages
• What is cache coherency?
 o Why does this problem exist?
• Private data vs. shared data
• Cache coherency schemes provide migration and replication of shared data items. What is migration and replication?
• What are the two cache coherency protocols that we discussed? How are they similar and how are they different? What are the advantages and disadvantages of each, if any?
• Discuss the basic idea of the snooping protocol and directory based protocols
 o How do the work
 o What information is stored for each cache and memory block?
 o Know what all the states are and how the transitions work between each state (all of the state diagrams in the lecture slides)
 o In either protocol, how does a processor see the state of memory?
• What is false and true sharing and how are they similar and the same. Include discussion of block size
• What is an atomic operation and why is it necessary for sharing data?

Chapter 5

• 11 advanced cache optimizations – what are they and how do they improve cache performance? Do they always improve performance or does it depend on the benchmark?
 • Small and simple caches to reduce hit time
 • Way prediction to reduce hit time
 • Trace caches to reduce hit time
 • Pipelined cache access to increase cache bandwidth
 • Nonblocking caches to increase cache bandwidth
 • Multibanked caches to increase cache bandwidth
 • Critical word first and early restart to reduce miss penalty
 • Merging write buffer to reduce miss penalty
 • Compiler optimizations to reduce miss rate
 • Code and data rearrangement
 • Loop interchange
 • Blocking
 • Hardware prefetching of instructions and data to reduce miss penalty or miss rate
 • Compiler controlled prefetching to reduce miss penalty or miss rate
• The table on page 309 summarizes all of the optimization techniques and tells you which aspect it effects
• Memory technology and optimizations
 • How are SRAMs and DRAMs layed out? How do they work? How are they different? What are the advantages and disadvantages to one over the other?
 • Describe how DRAMs are accessed i.e. address is passed in 2 pieces
 • How can locality be used to improve the performance of DRAMs?
 • What is DDR SDRAM?
• Protection: Virtual memory and virtual machines
 • How does virtual memory provide protect? What protections are provided?
 • What architectural support is needed for virtual memory?
 • Why have virtual machines become popular recently?
 • What types of protection does a virtual machine offer?
 • What is a virtual machine?
 • When running a virtual machine, describe how the system is laid out in terms of VM, VMM and Host os?
 • What is a s systems virtual machine?
 • What is the virtual machine monitor? What is it responsible for? What are its requirements?
• How do virtual machines assist in managing both software and hardware?
• What is virtualization?
• How does lack of support in the ISS affect virtualization overhead?
• Discuss how different running modes are important for the VM and VMM
• Why can a VM not execute privileged instructions? What are privileged instructions and how are they handled when a VM tries to execute them?
• Why is I/O so difficult in VMs? How does a VM access physical devices on a machine?
• Discuss the issues with virtual memory and virtual machines. What is the added overhead? How can that overhead be minimized?

Chapter 6
• Why has the topic of storage become so popular recently?
• Areal density
• Concept of difference in whole disk read time for random access vs sequential access
• RAID
 o What is the concept of RAID? Why is it important? Why is it useful?
 o Give any possible advantages/disadvantages to using RAID X. If I were to ask you this question, I would say what RAID X does to remind you
 o How do different RAID methods perform for little and big writes?
 o Know the differences between the following RAID models. The table on page 363 might be helpful
 • RAID 1 - mirrored
 • RAID 4 – parity-based with one parity disk
 • RAID 5 – parity-based with the parity spread across all disks
 • RAID 6 – row and diagonal parity
 o How can RAID 6 recover from multiple disk failures? Work through a recovery problem like in the slides
• Errors, faults and failures
 o Define error, fault and failure and how do those differ?
 o Given an example situation, determine if it is an error, fault or failure
 o What is a latent error?
 o Four fault categories and what they are
 • Hardware faults
 • Design faults
 • Operation faults
 • Environmental faults
 o Three types of faults
 • Transient faults
 • Intermittent faults
 • Permanent faults
 o Why are operator faults so hard to quantify?
• I/O performance, reliability measures and benchmarks
 o Know the basic producer consumer model from page 372
 o Measures of I/O performance:
 • How many devices can you connect
 • Which I/O devices can you connect
 • Response time
 • Throughput
 • Interference of I/O with processor execution
 o Difference between throughput and response time
 o Transaction time is made up of
 • Entry time
 • System response time
 • Think time
 o Transaction processing benchmarks
 • Mostly concerned with I/O rate over data rate
 • TPC benchmark characteristics on page 375
 • Why must the data set scale in size with the throughput?
 • Figure 6.14 – Know the differences in these reconstruction policies.
• Queuing Theory
 o Give a basic definition of queuing theory. What is it useful for? What does it tell us? What types of systems does it measure? Etc
What is a system that is in equilibrium?
Little’s law
Terms on page 381
What is the “mean time to complete service of a task when a new task arrives if the server is busy?”
 - Why is this term hard to measure? How is it measured in queuing theory?
 - What is a Poisson distribution?
 - How can a histogram give is a characterization of a set of data?
 - What does memoryless mean in the context of distributions?
Know the assumptions of our model on page 386
What is an M/M/1 model?
What is an M/M/m model?
Be able to solve problems like those in the examples on pages 382, 387,