
EEL 5764: Graduate Computer Architecture

 Appendix A - Pipelining Review

These slides are provided by:

David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross

Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

9/19/08 2

What is Pipelining?

•! Overlapping execution to produce faster results
–! Washing and drying dishes

–! Washing and drying laundry

–! Automobile assembly line

–! Chipotle, Quiznos, etc

•! Speeds up production
–! Master personal

–! Eliminates “jack of all trades, master of none” syndrome

•! Pipelining in computer architecture
–! Multiple instructions are overlapped in execution

–! Exploits parallelism

–! Not visible to programmer

•! Each stage is a pipeline “cycle”
–! Each stage happens simultaneously so results are produced

 only as fast as the longest pipeline cycle

–! Determines clock cycle time

9/19/08 3

Outline

•! MIPS – An ISA for Pipelining

•! 5 stage pipelining

•! Structural and Data Hazards

•! Forwarding

•! Branch Schemes

•! Exceptions and Interrupts

9/19/08 4

A "Typical" RISC ISA (Load/Store)

•! Invented to be easy to pipeline

•! 32-bit fixed format instruction (3 formats)
–! Fixed length, easy to decode

•! 32 32-bit GPR (General Purpose Registers) (R0
 contains zero)

•! ALU instructions
–! 3-address, reg-reg arithmetic instruction

–! 2-address, reg-im arithmetic instruction

•! Single address mode for load/store:
base + displacement

–! no indirection

•! Simple branch conditions

•! Delayed branch

9/19/08 5

Example: MIPS

Op

31 26 0 15 16 20 21 25

Rs1 Rd immediate

Op

31 26 0 25

Op

31 26 0 15 16 20 21 25

Rs1 Rs2

target

Rd Opx

Register-Register

5 6 10 11

Register-Immediate

Op

31 26 0 15 16 20 21 25

Rs1 Rs2/Opx immediate

Branch

Jump / Call

shamt

9/19/08 6

Datapath vs Control (FSM+D)

•! Datapath: Storage, FU, interconnect sufficient to perform the
 desired functions

–! Inputs are Control Points

–! Outputs are signals

•! Controller: State machine to orchestrate operation on the data
 path

–! Based on desired function and signals

Datapath Controller

Control Points

signals

9/19/08 7

Approaching an ISA – How to Pipeline

•! Instruction Set Architecture
–! Defines set of operations, instruction format, hardware

 supported data types, named storage, addressing modes,
 sequencing

•! Examine needed components and FUs

•! Map instructions to RTL statements on
 architected registers and memory

•! Assemble adequate datapath
–! Architected storage mapped to actual storage

–! Function units to do all the required operations

–! Possible additional storage (eg. MAR, MBR, …)

–! Interconnect to move information among regs and FUs

•! Implement controller (Finite State Machine (FSM))
 to drive datapath

9/19/08 8

Outline

•! MIPS – An ISA for Pipelining

•! 5 stage pipelining

•! Structural and Data Hazards

•! Forwarding

•! Branch Schemes

•! Exceptions and Interrupts

9/19/08 9

5 Steps of MIPS Datapath
Figure A.2, Page A-8

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
L
U

M
U

X

M
e
m

ory

R
e
g F

ile

M
U

X

M
U

X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

4

A
d
d
e
r
 Zero?

Next SEQ PC

A
d
d
re

ss

Next PC

WB Data

I
nst

RD

RS1

RS2

Imm

No pipelining here, just

 steps. 1 cycle does it

 all

9/19/08 10

5 Steps of MIPS Datapath
Figure A.3, Page A-9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X

M
U

X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

I
F
/I

D

I
D
/E

X

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next SEQ PC Next SEQ PC

RD RD RD W
B

 D
at

a

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
Pipeline registers

9/19/08 11

Inst. Set Processor Controller

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

Ifetch

opFetch-DCD

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI

r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST

PC <= IRjaddr if bop(A,b)

PC <= PC+IRim

br jmp

JSR
JR

9/19/08 12

Visualizing Pipelining
Figure A.2, Page A-8

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
L
U

DMem Ifetch Reg

Cycle 8 Cycle 9

Shows BW vs. Latency

9/19/08 13

Pipelining is not quite that easy!

•! Limits to pipelining: Hazards prevent next instruction
 from executing during its designated clock cycle

–! Structural hazards: HW cannot support this combination of
 instructions (single person to fold and put clothes away)

–! Data hazards: Instruction depends on result of prior instruction still
 in the pipeline (missing sock)

–! Control hazards: Caused by delay between the fetching of
 instructions and decisions about changes in control flow (branches
 and jumps).

9/19/08 14

One Memory Port/Structural Hazards
Figure A.4, Page A-14

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
L
U

DMem Ifetch Reg

9/19/08 15

One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
L
U

DMem Ifetch Reg

Bubble Bubble Bubble Bubble Bubble

How do you “bubble” the pipe? 9/19/08 16

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle

 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal
 Speedup !

+

!
=

pipelined

dunpipeline

 TimeCycle

 TimeCycle

CPI stall Pipeline 1

depth Pipeline
 Speedup !

+
=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, CPI = 1:

9/19/08 17

Example: Dual-port vs. Single-port

•! Machine A: Dual ported memory (“Harvard Architecture”)

•! Machine B: Single ported memory, but its pipelined
 implementation has a 1.05 times faster clock rate

•! Ideal CPI = 1 for both

•! Loads are 40% of instructions executed

 SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

 = Pipeline Depth

 SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

 = (Pipeline Depth/1.4) x 1.05

 = 0.75 x Pipeline Depth

 SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

•! Machine A is 1.33 times faster

9/19/08 18

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB These are all

 dependencies,

 which are

 hazards?

9/19/08 19

•! Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

•! Caused by a “Dependence” (in compiler
 nomenclature). This hazard results from an actual
 need for communication.

Three Generic Data Hazards

I: add r1,r2,r3

J: sub r4,r1,r3

9/19/08 20

•! Write After Read (WAR)
InstrJ writes operand before InstrI reads it

•! Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

•! Can’t happen in MIPS 5 stage pipeline because:

–! All instructions take 5 stages, and

–! Reads are always in stage 2, and

–! Writes are always in stage 5

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Three Generic Data Hazards

9/19/08 21

Three Generic Data Hazards

•! Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

•! Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

•! Can’t happen in MIPS 5 stage pipeline because:

–! All instructions take 5 stages, and

–! Writes are always in stage 5

•! Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

9/19/08 22

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

9/19/08 23

HW Change for Forwarding
Figure A.23, Page A-37

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m

ux

R
e
giste

rs

NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?
9/19/08 24

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

9/19/08 25

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-21

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Load use dependency

9/19/08 26

Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
L
U

DMem Ifetch Reg

Reg Ifetch A
L
U

DMem Reg Bubble

Ifetch A
L
U

DMem Reg Bubble Reg

Ifetch

A
L
U

DMem Bubble Reg

How is this detected?

9/19/08 27

Try producing fast code for

 a = b + c;

 d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

 LW Rb,b

 LW Rc,c

 ADD Ra,Rb,Rc

 SW a,Ra

 LW Re,e

 LW Rf,f

 SUB Rd,Re,Rf

 SW d,Rd

Software Scheduling to Avoid Load
 Hazards

Fast code:

 LW Rb,b

 LW Rc,c

 LW Re,e

 ADD Ra,Rb,Rc

 LW Rf,f

 SW a,Ra

 SUB Rd,Re,Rf

 SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.
9/19/08 28

Outline

•! MIPS – An ISA for Pipelining

•! 5 stage pipelining

•! Structural and Data Hazards

•! Forwarding

•! Branch Schemes

•! Exceptions and Interrupts

•! Conclusion

9/19/08 29

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

Reg A
L
U

DMem Ifetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
9/19/08 30

Branch Stall Impact

•! If CPI = 1, 30% branch,
 Stall 3 cycles => new CPI = 1.9!

•! Two part solution:
–! Determine branch taken or not sooner, AND

–! Compute taken branch address earlier

•! MIPS branch tests if register = 0 or ! 0

•! MIPS Solution:
–! Move Zero test to ID/RF stage

–! Adder to calculate new PC in ID/RF stage

–! 1 clock cycle penalty for branch versus 3

9/19/08 31

A
d
d
e
r

I
F
/I

D

Pipelined MIPS Datapath
Figure A.24, page A-38

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m

ory

R
e
g F

ile

M
U

X

D
ata

M
e
m

ory

M
U

X

Sign
Extend

Zero?

M
E
M

/W
B

E
X
/M

E
M

4

A
d
d
e
r

Next
 SEQ
 PC

RD RD RD W
B

 D
at

a

•! Interplay of instruction set design and cycle time.

Next PC

A
d
d
re

ss

RS1

RS2

Imm

M
U

X

I
D
/E

X

9/19/08 32

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
–! Execute successor instructions in sequence

–! “Squash” instructions in pipeline if branch actually taken

–! Advantage of late pipeline state update

–! 47% MIPS branches not taken on average

–! PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

–! 53% MIPS branches taken on average

–! But haven’t calculated branch target address in MIPS

»! MIPS still incurs 1 cycle branch penalty

»! Other machines: branch target known before outcome

9/19/08 33

Four Branch Hazard Alternatives

#4: Delayed Branch
–! Define branch to take place AFTER a following instruction

 branch instruction

 sequential successor1

 sequential successor2

 sequential successorn

 branch target if taken

–! 1 slot delay allows proper decision and branch target
 address in 5 stage pipeline

–! MIPS uses this

Branch delay of length n

9/19/08 34

Scheduling Branch Delay Slots (Fig A.14)

•! A is the best choice, fills delay slot & reduces instruction count (IC)

•! In B, the sub instruction may need to be copied, increasing IC

•! In B and C, must be okay to execute sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

9/19/08 35

Delayed Branch

•! Compiler effectiveness for single branch delay slot:
–! Fills about 60% of branch delay slots

–! About 80% of instructions executed in branch delay slots useful
 in computation

–! About 50% (60% x 80%) of slots usefully filled

•! Delayed Branch downside: As processor go to
 deeper pipelines and multiple issue, the branch
 delay grows and need more than one delay slot

–! Delayed branching has lost popularity compared to more
 expensive but more flexible dynamic approaches

–! Growth in available transistors has made dynamic approaches
 relatively cheaper

9/19/08 36

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
 untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v
. speedup v. scheme penalty

 unpipelined stall

Stall pipeline 3 1.60 3.1 1.0

Predict taken 1 1.20 4.2 1.33

Predict not taken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency!Branch penalty

