Since 1980, CPU has outpaced DRAM ...

EEL 5764: Graduate Computer Q. How do architects address this gap?
. A. Put smaller, faster “cache” memories
Architecture Performance between CPU and DRAM.
(1/1atency) Create a “memory hierarchy”. CPU
4000 e 60% per yr
Appendix C — Memory Hierarchy 2Xin1.5yrs
. ‘00
Review Gap grew 50% per
Ann Gordon-Ross year
Electrical and C ter Engil]
el and Computer Enginearng 0 / DRAm
] ~ . 9% peryr
http://www.ann.ece.ufl.edu/ ' o e 2X in 10 yrs
These slides are provided by: \9 ‘\9 '),0
David Patterson 20 o0 Q0

Electrical Engineering and Computer Sciences, University of California, Berkeley

Modifications/additions have been made from the originals Y
ear

1977: DRAM faster than microprocessors Levels of the Memory Hierarchy

Capacity Upper Level

TIMING - | Oips Access-Time Stagil
o m—- Apple][(1977) cost Xfer Unit 1 faster
WHEN ANO BY WHOM CPU Registers .
MEMOAY 15 ACCESSED = Registers
. 100s Bytes | 9 |
TR TR, CPU: 1000 ns <0z ny' .
REFRESH PROGRAM InSTI" O er‘ands prog./compiler
o T DRAM: 400 ns cache P 18 bytes
K Bytes
(B 10-100 ns Cache
b £] 3 1-0.1 cents/bit cache cntl
_____ £ = Blocks 8-128 bytes
Poces30n € = Main Memory
£ b= M Bytes Memory
o ano covoun b = 200ns- 500ns
=z = $.0001-.00001 cents /bit 0s
mocesson { wio = = Disk Pages 512-4K bytes
. G Bytes, 10 ms
(10,000,000 ns) Disk
wo(o.—uoﬂ contaoL S zﬁ&ﬁp -3; 1 10_5 - _1% cents/bif Fil user/operator
i teve o lles Mbytes
{ eo. | Tq Larger
2 infinite T I
RAM | Applell i%cjg"" ape Lower Leve
Complement| System -
4 4K [51.298.00 : 0/19/08 4
48K 28300

iMac’s PowerPC 970: All caches on-chip
L1 (64K Instruction) | | | |

Memory Hierarchy: Apple iMac G5

Managed Managed Managed by OS, i
by compiler by hardware hardware, TR T
\ / / \\ applicl:ation | R
07 Reg L1Inst L1 Data L2 DRAM Disk Iesgt
Size 1K 64K 32K 512K 256M 80G ') er 512K
Latency |4 3, 3, 1, g, 107, iMac G5 s L2
Cycles, | ogns 19ns | 19ns | 69ns | 55ns | 12ms 1.6 GHz
Time
Goal: lllusion of large, fast, cheap memory
Let programs address a memory space that
scales to the disk size, at a speed that Is usually (1K)

as fast as register access

Y

Why are Caches Here to Stay?? Programs with locality cache well ...
The Principle of Locality s Bad Tocality Behavior —

|/ gt \' : i 5 "- e
L At e e e // i

aa)r

=
o
g

36

* The Principle of Locality:
— Program access a relatively small portion of the address space at
any instant of time.
» Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

» Last 15 years, HW relied on locality for speed

B L AL 56 : DA i
" 1

= Teporal

30} T

Memory Address (one dot per access)

It is a property of programs which is exploited in machine design.

Locality sl

18 —
Time

Donald J. Hatfield, Jeanette Gerald: Program
Paper made the case for virtual memory Restructuring for Virtual Memory. IBM Systems Journal

9/19/08 7
10(3): 168-192 (1971)

9/19/08 1

Memory Hierarchy: Terminology Cache Measures

: data appears in some block in the upper level
(example: Block X)

: the fraction of memory access found in the upper level
: Time to access the upper level which consists of

* Hit rate: fraction found in that level
— So high that usually talk about Miss rate

X ' . . — Miss rate fallacy: as MIPS to CPU performance,
RAM access time + Time to determine hit/miss miss rate to average memory access time in memory
Iowérdlzt/a:ar(eBelgiltoYl))e retrieve from a block in the « Average memory-access time (better metric)
= 1 - (Hit Rate) = Hit time + Miss rate x Miss penalty
: Time to replace a block in the upper level +] (ns or CIOCKS)
Time to deliver the block the processor * Miss penalty: time to replace a block from

Hit Time << Miss Penalty (500 instructions)

lower level, including time to replace in CPU
— May be better to recalculate results instead of refetching!

— access time: time to lower level

Lower Level = f(latency to lower level)
To Processor Ul]’vll’er Level Memory — transfer time: time to transfer block
emory
Bk X =f(BW between upper & lower levels)
From Processor I:l BIkY
9/19/08 . 9 9/19/08

]] Q1: Where can a block be placed in
4 Questions for Memory Hierarchy the upper level?

* Block 12 placed in 8 block cache:

Q1: Where can a block be pIaced in the upper level? — Fully associative, direct mapped, 2-way set associative

(Block placement) - S.A. Mapping = Block Number Modulo Number Sets
Q2: How is a block found if it is in the upper level? . 3
(Block identification) Full Associative yp°ct Mabped - 2-Way Assoc

(12mod8)=4 (12mod4)=0

Q3: Which block should be replaced on a miss? 01234567 01234567 01234567

(Block replacement)

Q4: What happens on a write? Cache
(Write strategy)

1111111111222222222233
0123456789012345678901234567890

Memory

9/19/08

Q2: How is a block found if it is in the
upper level?

+ Tag on each block
— No need to check index or block offset

* Increasing associativity shrinks index, expands
tag

Block Address Block
Offset

Tag Index

9/19/08 13

Q4: What happens on a write?

Write-Through Write-Back
. Write data only to the
Data written to cache cache
) block
Policy .
also written to lower Update lower level
-level memory when a block falls out
of the cache
Debug Easy Hard
Do read misses
produce writes? No Yes
Do repeated writes
make it to lower Yes No

level?

Additional option - What happens on a write miss? Write
allocate or write no-allocate

Q3: Which block should be replaced on a
miss?

» Easy for Direct Mapped

+ Set Associative or Fully Associative:
— Random
— LRU (Least Recently Used)
» But more complex as associativity goes up

Size LRU Ran LRU Ran LRU Ran
16 kB 52% 57% 4.7% 53% 4.4% 5.0%
64 kB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 kB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

9/19/08 14

Write Buffers for Write-Through Caches

Lower

Cache
Processor Level
Memory
/ rite Buffer

Holds data awaiting write-through to
lower level memory

Q.Why a write buffer? A. S0 CPU doesn’t stall

Q. Why a buffer, why not A. Bursts of writes are
just one register ? common.

Q. Are Read After Write A. Yes! Drain buffer before
(RAW) hazards anissue next read, or send read 1
for write buffer? after check write buffers.

5 Basic Cache Optimizations

* Reducing Miss Rate

1. Larger Block size (compulsory misses)

2. Larger Cache size (capacity misses) — can affect
hit time

3. Higher Associativity (conflict misses) — can
affect hit time

* Reducing Miss Penalty
4. Multilevel Caches

* Reducing hit time
5. Giving Reads Priority over Writes

9/19/08

E.g., Read complete before earlier writes in write buffer

The Limits of Physical Addressing

“Physicaladdresses™ of memory-locations

A0-A31
CPU

DO0-D31

Outline

* Virtual address spaces
» Page table layout

17 9/19/08

TLB design options

SIMPLE MODEL

A0-A31
Memory

DO0-D31

Data

|

All programs share one address space:
The physical address space

Machine language programs must be
aware of the machine organization

No way to prevent a program from
accessing any machine resource

Solution: Add a Layer of Indirection

“Virtual Addresses” “Physical Addresses”
AO-A3T Virtuat—Phys| AO-A3T
CPU Address

Translation Memory
DO0-D31 D0-D31
| Data |

User programs run in an standardized

virtual address space

Address Translation hardware
managed by the operating system (OS)
maps virtual address to physical memory

Hardware supports “modern” OS features:

Protection, Translation, Sharing

Three Advantages of Virtual Memory

— Program can be given consistent view of memory, even though physical
memory is scrambled

— Makes multithreading reasonable (now used a lot!)

— Only the most important part of program (“Working Set”) must be in
physical memory.

— Contiguous structures (like stacks) use only as much physical memory
as necessary yet still grow later.

— Different processes protected from each other.
— Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).
— Kernel data protected from User programs
— Very important for protection from malicious programs

— Can map same physical page to multiple users
(“Shared memory”)

9/19/08 2

Page tables encode virtual address spac

Page Table Me;:xsigzgce A virtual address space
is divided into blocks
/ frame of memory called pages
frame
frame -
/ frame A machine | ™™
usually supports ‘:::;'t
— pages of a few |¢koye
address SizeS 256 Kbytes
(MIPS R4000): [M
4 Mbytes
08 manages L. 16 Mbytes
the page A page table is indexed by a
table for virtual address

each ASID
A valid page table entry codes physical
memory “frame” address for the page

Page tables encode virtual address space

A virtual address space
is divided into blocks
of memory called pages

Virtual Physical
Address Space Address Space

Page Size

A machine

4 Kbytes
usually supports 16 Kbytes

pages of afew [y
sizes 256 Kbytes
(MIPS R4000): [Moe

4 Mbytes
16 Mbytes

A valid page table entry codes physical
memory “frame” address for the page

Details of Page Table

Page Table Physical
Memory Space)
Virtual Address
frame 12—
/ — | [offset |
V4 frame !
frame Page Table
°age Table
Base Reg . Access
index |/ Rights
virtual InatOe
address pag table located
table - b
in physical | [offset |
memory —q2—

Physical Address

+ Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)
* Virtual memory => treat memory =~ cache for disk

9/19/08 24

Page tables may not fit in memory!

A table for 4KB pages for a 32-bit address
space has 1M entries
Each process needs its own address space!

Two-level Page Tables

32 bit virtual address

31 22 21 12 1 0
| P1 index I P2 index Page Offset |

Top-level table wired in main memory

Subset of 1024 second-level tables in
main memory; rest are on disk or
unallocated

MIPS Address Translation: How does it work?

Each memory access may take twice as
long — page fault and data fetch!

| “Virtual Addresses” ["Physical Addresses]
AO-A31 Virtual Physical A0-A31
Translation
CPU Look-Aside Memory
DO0-D31 ?_Il_'llifBe)r D0-D31

|

| Data J'B)/what Is the
. . table of
Translation Look-Aside Blg mappings

d

A small fully-associative of that it
mappings from virtual to physical addresses taches?

TLB also contains
protection bits for virtual address

Fast common case: Virtual address is in TLB,
process has permission to read/write it.

VM and Disk: Page replacement policy

Page Table
Dirty bif: page dirty jised

— writien. 1 |0

- ~ 1[0

7/ N Used bit:setto g 4

\ {onany 1 11

I reference 0 lo
I Set of all pages | g

In Memory JI Tail pointer:
\\ Clear the used
 ad \ /J bitinthe
~ 7 page table
Head pointer - - Freelist
Place pages on fre
list if used bit
is still clear.
Schedule pages with) .
dirty bit sot to Architect’s role: 1!
be written to disk. support setting dirty Free Pages
and used bits

