
EEL 5764: Graduate Computer

 Architecture

 Storage

These slides are provided by:

David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross

Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

10/27/08 2

Case for Storage

•! Shift in focus from computation to
 communication and storage of information

–! E.g., Cray Research (build the fasted computer possible) vs.
 Google/Yahoo (massive communication and storage)

–! “The Computing Revolution” (1960s to 1980s)
! “The Information Age” (1990 to today)

»! Cray is struggling while Google is flourishing

•! Storage emphasizes reliability and scalability as
 well as cost-performance

10/27/08 3

Case for Storage

•! Compiler determines what architecture to use

•! OS determines the storage

•! Different focus and critical issues
–! If a program crashes, just restart program, user is mildly

 annoyed

–! If data is lost, users are very angry

•! Also has own performance theory—queuing
 theory—balances throughput vs. response time

10/27/08 4

Outline

•! Magnetic Disks

•! RAID in the past

•! RAID in the present

•! Advanced Dependability/Reliability/Availability

•! I/O Benchmarks, Performance and Dependability

•! Intro to Queueing Theory

10/27/08 5

Disk Figure of Merit: Areal Density

•! Designers care about areal density
–! Areal density = Bits Per Inch (BPI) X Tracks Per Inch (TPI)

•! Graph shows large gains in density over time
–! Mechanical engineering and error correcting codes have allowed

 for these increases

Year Areal Density

1973 2

1979 8

1989 63

1997 3,090

2000 17,100

2006 130,000

1

10

100

1,000

10,000

100,000

1,000,000

1970 1980 1990 2000 2010

Year

A
re

a
l

D
e

n
s

it
y

10/27/08 6

Historical Perspective

•! First disk invented by IBM
–! 1956 IBM Ramac — early 1970s Winchester

–! Developed for mainframe computers

–! proprietary interfaces

•! Form factor (item using disk) and capacity drives market more
 than performance

•! 1970s developments
–! 5.25 inch floppy disk formfactor (microcode into mainframe)

–! Emergence of industry standard disk interfaces

•! Mid 1980s: Client/server computing
–! Mass market disk drives become a reality

»! industry standards: SCSI, IPI, IDE

»! 5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

•! 1900s: Laptops => 2.5 inch drives

•! 2000s: What new devices leading to new drives?

10/27/08 7

Future Disk Size and Performance

•! Capacity growth (60%/yr) overshoots bandwidth
 growth (40%/yr)

•! Slow improvement in seek, rotation (8%/yr)

•! Time to read whole disk

 Year Sequentially Randomly (latency)
 (bandwidth) (1 sector/seek)

 1990 4 minutes 6 hours

 2000 12 minutes 1 week(!)

 2006 56 minutes 3 weeks (SCSI)

 2006 171 minutes 7 weeks (SATA)

•! Disks are now like tapes, random access is slow!

3x

4.6x

3x

24x

3x

2.3x

10/27/08 8

What have Magnetic Disks been
 doing?
•! $/MB: improving 25% per year

•! Evolving to smaller physical sizes
–! 14” -> 10” > 8” ->5.25” -> 3.5” -> 2.5” ->1.6”? -> 1”?

•! Can we use a lot of smaller disks to close the
 gap in performance between disks and CPU?

–! Smaller platter equates to shorter seek time

10/27/08 9

Outline

•! Magnetic Disks

•! RAID in the past

•! RAID in the present

•! Advanced Dependability/Reliability/Availability

•! I/O Benchmarks, Performance and Dependability

•! Intro to Queueing Theory

10/27/08 10

Manufacturing Advantages of Disk
 Arrays (1987)
•! Conventional: 4 disk designs (4 product teams):

•! Disk array: 1 disk design

Low end -> high end (main frame)

3.5” 5.25”
10”

14”

3.5”

But is there a catch??

10/27/08 11

Arrays of Disks to Close the
 Performance Gap (1988 disks)
•! Replace small number of large disks with a large

 number of small disks

•! Data arrays have potential for
–! Large data and I/O rates

–! High MB per cu. ft

–! High MB per KW

IBM 3380 Smaller disk Smaller disk x50

Data Capacity 7.5 GBytes 320 MBytes 16 GBytes

Volume 24 cu. ft. 0.2 cu. ft. 20 cu. ft

Power 1.65 KW 10 W 0.5 KW

Data Rate 12 MB/s 2 MB/s 100 MB/s

I/O Rate 200 I/Os/s 40 I/Os/s 2000 I/Os/s

Cost $100k $2k $100k

10/27/08 12

Array Reliability

•! Reliability of N disks = Reliability of 1 Disk ÷ N
•! 50,000 Hours ÷ 70 disks = 700 hours

•! Disk system MTTF: Drops from 6 years to 1 month!

•! Arrays (without redundancy) too unreliable to be useful!

•! Originally concerned with performance, but reliability

became an issue

10/27/08 13

Improving Reliability with Redundancy

•! Add redundant drives to handle failures
Redundant

Array of

Inexpensive (Independent? - First disks weren’t cheap)

Disks

•! Redundancy offers 2 advantages:
–! Data not lost: Reconstruct data onto new disks

–! Continuous operation in presence of failure

•! Several RAID organizations
–! Mirroring/Shadowing (Level 1 RAID)

–! ECC (Level 2 RAID)

–! Parity (Level 3 RAID)

–! Rotated Parity (Level 5 RAID)

–! Levels were used to distinguish between work at different
 institutions

10/27/08 14

Redundancy via Mirroring/Shadowing
 (Level 1 RAID)

Data Disks Redundant (“Check”) Disks

10/27/08 15

Redundancy via Mirroring/Shadowing
 (Level 1 RAID)

•!Each disk is fully duplicated onto its “mirror”"

 Very high availability can be achieved"
• Bandwidth sacrifice on write:"

 Logical write = two physical writes"
• Reads may be optimized"

• Most expensive solution: 100% capacity overhead"

10/27/08 16

Redundancy via EEC (Level 2 RAID)

Data Disks Redundant (“Check”) Disks

1+Log n disks

Used idea of error correction codes from memory
 and applied to disks. Parity is calculated over
 subsets of disks, and you can figure out which disk
 failed and correct it. Single error correction

10/27/08 17

Redundancy via Parity (Level 3 RAID)

•! Single parity disk - parity is striped across disks

•! Now only need a single redundant disk
–! Now attractive for low cost solution

Data Disks Redundant (“Check”) Disks

10/27/08 18

Inspiration for RAID 4

•! RAID 3 relies on parity disk to discover
 errors on Read

•! But every sector has an error detection field

•! To catch errors on read, rely on error
 detection field on the disk vs. the parity disk

•! Allows independent reads to different disks
 simultaneously

•! Define:
–! Small read/write - read/write to one disk

–! Large read/write - read/write to more than one disk

10/27/08 19

Redundant Arrays of Inexpensive Disks
 RAID 4: High I/O Rate Parity

D0" D1" D2" D3" P"

D4" D5" D6" P"D7"

D8" D9" P"D10" D11"

D12" P"D13" D14" D15"

P"D16" D17" D18" D19"

D20" D21" D22" D23" P"

."

."

."

."

."

."

."

."

."

."

."

."

."

."

."
Disk Columns"

Increasing"
Logical"

Disk "
Address"

Stripe!

Insides of
 5 disks"

Example:"
small read
 D0 & D5, #
large write
 D12-D15"

10/27/08 20

Inspiration for RAID 5

•! RAID 4 works well for small reads

•! Small writes:

–!Option 1: read other data disks, create new sum and write to
 Parity Disk (P)

–!Option 2: since P has old sum, compare old data to new data,
 add the difference to P

•! Parity disk becomes bottleneck: Write to D0, D5 both
 also write to P disk

D0" D1" D2" D3" P"

D4" D5" D6" P"D7"

10/27/08 21

Redundant Arrays of Inexpensive Disks
 RAID 5: High I/O Rate Interleaved Parity

Independent
 writes"
possible
 because of"
interleaved
 parity"

D0" D1" D2" D3" P"

D4" D5" D6" P" D7"

D8" D9" P" D10" D11"

D12" P" D13" D14" D15"

P" D16" D17" D18" D19"

D20" D21" D22" D23" P"

."

."

."

."

."

."

."

."

."

."

."

."

."

."

."
Disk Columns"

Increasing"
Logical"

Disk "
Addresses"

Example:
 write to
 D0, D5
 uses
 disks 0, 1,
 3, 4"

10/27/08 22

Problems of Disk Arrays:
Small Writes

D0 D1 D2 D3 P D0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

10/27/08 23

Outline

•! Magnetic Disks

•! RAID in the past

•! RAID in the present

•! Advanced Dependability/Reliability/Availability

•! I/O Benchmarks, Performance and Dependability

•! Intro to Queueing Theory

10/27/08 24

RAID 6: Recovering from 2 failures

•! RAID 6 was always there but not so popular
–! Has recently become more popular. Why?

•! Recover from more than 1 failure - Why?
–! operator accidentally replaces the wrong disk during a

 failure

–! since disk bandwidth is growing more slowly than disk
 capacity, the MTT Repair a disk in a RAID system is
 increasing

»! Long time to copy data back to disk after replacement

»! increases the chances of a 2nd failure during repair
 since takes longer

–! reading much more data during reconstruction meant
 increasing the chance of an uncorrectable media failure,
 which would result in data loss

»! Uncorrectable error - ECC doesn’t catch. Insert another
 error

10/27/08 25

RAID 6: Recovering from 2 failures

•! Recovering from 2 failures
–! Network Appliance’s (make NSF file servers primarily) row

-diagonal parity or RAID-DP

•! Like the standard RAID schemes, it uses redundant
 space based on parity calculation per stripe

•! Since it is protecting against a double failure, it adds
 two check blocks per stripe of data.

–! 2 check disks - row and diagonal parity

–! 2 ways to calculate parity

•! Row parity disk is just like in RAID 4
–! Even parity across the other n-2 data blocks in its stripe

–! So n-2 disks contain data and 2 do not for each parity stripe

•! Each block of the diagonal parity disk contains the
 even parity of the blocks in the same diagonal

–! Each diagonal does not cover 1 disk, hence you only need n-1
 diagonals to protect n disks

10/27/08 26

Example n=5

Data
 Disk 0

Data
 Disk 1

Data
 Disk 2

Data
 Disk 3

Row
Parity

Diagon
al Parity

0 1 2 3 4 0
1 2 3 4 0 1
2 3 4 0 1 2
3 4 0 1 2 3
4 0 1 2 3 4
0 1 2 3 4 0

•! Assume disks 1 and 3 fail

•! Can’t recover using row parity because 2 data blocks are
 missing

•! However, we can use row parity 0 since it covers every disk
 except disk 1, thus we can recover some information on disk 3

•! Recover in an iterative fashion, alternating between row and
 diagonal parity recovery

Fail! Fail!

1. Row 0 misses disk 1, so data can be recovered in disk 3 from row 0.

0

2. Row 2 misses disk 3, so data can
 be recovered in disk 1 from row 2.

2

3. Standard RAID
 recovery can now
 recover rows 1 and 2.

4

3

4. Diagonal row parity can
 now recover row 3 and 4 in
 disks 3 and 1 respectively

3

4

5. Finally, standard
 RAID recover can
 recover rows 0 and 3

1

1

10/27/08 27

Berkeley History: RAID-I

•!RAID-I (1989)
–!Consisted of a Sun 4/280

 workstation with 128 MB of DRAM,
 four dual-string SCSI controllers,
 28 5.25-inch SCSI disks and
 specialized disk striping software

•!Today RAID is $24 billion
 dollar industry, 80% nonPC
 disks sold in RAIDs

10/27/08 28

Summary: RAID Techniques: Goal was
 performance, popularity due to reliability of
 storage

• Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"

Logical write = two physical writes

100% capacity overhead

• Parity Data Bandwidth Array (RAID 3)

Parity computed horizontally

Logically a single high data bw disk

• High I/O Rate Parity Array (RAID 5)

Interleaved parity blocks

Independent reads and writes

Logical write = 2 reads + 2 writes

1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

0
0
1
1
0
0
1
0

1
0
0
1
0
0
1
1

1
0
0
1
0
0
1
1

10/27/08 29

Outline

•! Magnetic Disks

•! RAID in the past

•! RAID in the present

•! Advanced Dependability/Reliability/Availability

•! I/O Benchmarks, Performance and Dependability

•! Intro to Queueing Theory

10/27/08 30

Definitions

•! Examples on why precise definitions so important
 for reliability

–! Confusion between different communities

•! Is a programming mistake a fault, error, or failure?
–! Are we talking about the time it was designed

or the time the program is run?

–! If the running program doesn’t exercise the mistake,
is it still a fault/error/failure?

•! If an alpha particle hits a DRAM memory cell, is it a
 fault/error/failure if it doesn’t change the value?

–! Is it a fault/error/failure if the memory doesn’t access the changed bit?

–! Did a fault/error/failure still occur if the memory had error correction
 and delivered the corrected value to the CPU?

10/27/08 31

IFIP Standard terminology

•! Computer system dependability: quality of delivered service
 such that reliance can be placed on service

•! Service is observed actual behavior as perceived by other
 system(s) interacting with this system’s users

•! Each module has ideal specified behavior, where service
 specification is agreed description of expected behavior

•! A system failure occurs when the actual behavior deviates
 from the specified behavior

•! failure occurred because an error, a defect in module

•! The cause of an error is a fault

•! When a fault occurs it creates a latent error, which becomes
 effective when it is activated

•! When error actually affects the delivered service, a failure
 occurs (time from error to failure is error latency)! 10/27/08 32

Fault v. (Latent) Error v. Failure

•! An error is manifestation in the system of a fault,
a failure is manifestation on the service of an error

•! If an alpha particle hits a DRAM memory cell, is it a
 fault/error/failure if it doesn’t change the value?

–! Is it a fault/error/failure if the memory doesn’t access the changed bit?

–! Did a fault/error/failure still occur if the memory had error correction
 and delivered the corrected value to the CPU?

•! An alpha particle hitting a DRAM can be a fault

•! if it changes the memory, it creates an error

•! error remains latent until effected memory word is read

•! if the effected word error affects the delivered service,
 a failure occurs!

10/27/08 33

Fault Categories

1.$ Hardware faults: Devices that fail, such alpha particle hitting
 a memory cell

2.$ Design faults: Faults in software (usually) and hardware
 design (occasionally)

3.$ Operation faults: Mistakes by operations and maintenance
 personnel

4.$ Environmental faults: Fire, flood, earthquake, power failure,
 and sabotage

•! Also by duration:

1.$ Transient faults exist for limited time and not recurring

2.$ Intermittent faults cause a system to oscillate between
 faulty and fault-free operation

3.$ Permanent faults do not correct themselves over time

10/27/08 34

Fault Tolerance vs Disaster Tolerance

•! Fault-Tolerance (or more properly, Error
-Tolerance): mask local faults
(prevent errors from becoming failures)

–! RAID disks

–! Uninterruptible Power Supplies

–! Cluster Failover

•! Disaster Tolerance: masks site errors
(prevent site errors from causing service
 failures) - Could wipe everything out

–! Protects against fire, flood, sabotage,..

–! Redundant system and service at remote site.

–! Use design diversity

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

10/27/08 35

Case Studies - Tandem Trends
Why do computers fail reported MTTF by Component

0

50

100

150

200

250

300

350

400

450

1985 1987 1989

software

hardware

maintenance

operations

environment

total

Mean Time to System Failure (years)
by Cause

 1985 1987 1990
SOFTWARE 2 53 33 Years
HARDWARE 29 91 310 Years
MAINTENANCE 45 162 409 Years
OPERATIONS 99 171 136 Years
ENVIRONMENT 142 214 346 Years

SYSTEM 8 20 21 Years
Problem: Systematic Under-reporting

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

Better

Worse

10/27/08 36

!!Cause of System Crashes!!

20%
10%

5%

50%

18%

5%

15%

53%

69%

15% 18% 21%

0%

20%

40%

60%

80%

100%

1985 1993 2001

Other: app, power,
network failure

System management:
actions + N/problem

Operating System
failure

Hardware failure

(est.)

•! Hard to quantify human operator failures
–! People may not be truthful if their job may depend on it

•! Rule of Thumb: Maintenance costs 10X more than HW
–! so over 5 year product life, ~ 95% of cost is maintenance

Is Maintenance the Key?

10/27/08 37

HW Failures in Real Systems: Tertiary
 Disks

Component Total in System Total Failed % Failed

SCSI Controller 44 1 2.3%

SCSI Cable 39 1 2.6%

SCSI Disk 368 7 1.9%

IDE Disk 24 6 25.0%

Disk Enclosure -Backplane 46 13 28.3%

Disk Enclosure - Power Supply 92 3 3.3%

Ethernet Controller 20 1 5.0%

Ethernet Switch 2 1 50.0%

Ethernet Cable 42 1 2.3%

CPU/Motherboard 20 0 0%

•! 20 PC cluster in seven 7-foot high, 19-inch wide racks
•! 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks
•! P6-200MHz with 96 MB of DRAM each
•! FreeBSD 3.0
•! connected via switched 100 Mbit/second Ethernet

10/27/08 38

Does Hardware Fail Fast? 4 of 384
 Disks that failed in Tertiary Disk

Messages in system log for failed disk No. log
msgs

Duration
(hours)

Hardware Failure (Peripheral device write fault
[for] Field Replaceable Unit)

1763 186

Not Ready (Diagnostic failure: ASCQ = Component
ID [of] Field Replaceable Unit)

1460 90

Recovered Error (Failure Prediction Threshold
Exceeded [for] Field Replaceable Unit)

1313 5

Recovered Error (Failure Prediction Threshold

Exceeded [for] Field Replaceable Unit)

431 17

There were early warnings in the logs! Could just monitor logs.

10/27/08 39

Quantifying Availability

Availability

90.%

99.%

99.9%

99.99%

99.999%

99.9999%

99.99999%

System Type

Unmanaged

Managed

Well Managed

Fault Tolerant

High-Availability

Very-High-Availability

Ultra-Availability

Unavailable
(min/year)

50,000

5,000

500

50

5

.5

.05

Availability

Class

1
2
3
4
5
6
7

UnAvailability = MTTR/MTBF

 can cut it in ! by cutting MTTR or MTBF
From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

10/27/08 40

How Realistic is "5 Nines"?

•! HP claims HP-9000 server HW and HP-UX OS can
 deliver 99.999% availability guarantee “in certain
 pre-defined, pre-tested customer environments”

–! Application faults?

–! Operator faults?

–! Environmental faults?

•! Collocation sites (lots of computers in 1 building on
 Internet) have

–! 1 network outage per year (~1 day)

–! 1 power failure per year (~1 day)

•! Microsoft Network unavailable for a day due to
 problem in Domain Name Server: if only outage per
 year, 99.7% or 2 Nines

–! Needed 250 years of interruption free service to meet their target
 “nines”

10/27/08 41

Outline

•! Magnetic Disks

•! RAID in the past

•! RAID in the present

•! Advanced Dependability/Reliability/Availability

•! I/O Benchmarks, Performance and Dependability

•! Intro to Queueing Theory

10/27/08 42

I/O Performance

Response time = Queue + Device Service time

100%

Response
Time (ms)

Throughput
(% total BW)

0

100

200

300

0%

Proc

Queue

IOC Device

Metrics:
 Response Time
 vs. Throughput

10/27/08 43

I/O Benchmarks

•! For better or worse, benchmarks shape a field

–! Processor benchmarks classically aimed at response time for fixed
 sized problem

–! I/O benchmarks typically measure throughput, possibly with upper
 limit on response times (or 90% of response times)

•! Transaction Processing (TP) (or On-line TP=OLTP)
–! Systems must promise some QOS

»! If bank computer fails when customer withdraw money, TP
 system guarantees account debited if customer gets $ &
 account unchanged if no $

–! Airline reservation systems & banks use TP

•! Atomic transactions makes this work

•! Classic metric is Transactions Per Second (TPS)

10/27/08 44

I/O Benchmarks: Transaction Processing

•! Early 1980s great interest in OLTP
–! Demand increasing

–! Hard to compare systems

»! Each vendor picked own conditions for TPS claims, report only CPU
 times with widely different I/O

»! Conflicting claims led to disbelief of all benchmarks ! chaos

•! Need standard benchmarks
–! 1984 Jim Gray (Tandem) distributed paper to Tandem + 19 in other

 companies propose standard benchmark

•! Published “A measure of transaction processing power,”
 Datamation, 1985 by Anonymous et. al

–! To indicate that this was effort of large group

–! To avoid delays of legal department of each author’s firm

–! Berkley still gets mail at Tandem to author “Anonymous”

•! Led to Transaction Processing Council in 1988
–! www.tpc.org

10/27/08 45

I/O Benchmarks: TP1 by Anon et. al

•! Scalability requirement
–!Who cares if you can get 1M/sec (TPS) on a single record

–!Need to scale number of records with total transactions

 TPS Number of ATMs Account-file size

 10 1,000 0.1 GB

 100 10,000 1.0 GB

 1,000 100,000 10.0 GB

 10,000 1,000,000 100.0 GB

–! Each input TPS =>100,000 account records, 10 branches, 100 ATMs

•! Response time
–!Not all transaction have to happen under the threshold

–! 95% transactions take ! 1 second

•! Price factored in
–!(initial purchase price + 5 year maintenance = cost of ownership)

•! Hire auditor to certify results

10/27/08 46

Unusual Characteristics of TPC

•! Price is included in the benchmarks
–! cost of HW, SW, and 5-year maintenance agreements

–! included ! price-performance as well as performance

•! The data set generally must scale in size as the throughput
 increases

–! trying to model real systems

–! demand on system

–! size of the data stored

•! The benchmark results are audited
–! Must be approved by certified TPC auditor, who enforces TPC rules ! only fair

 results are submitted

•! Throughput is the performance metric but response times are
 limited

–! eg, TPC-C: 90% transaction response times < 5 seconds

•! An independent organization maintains the benchmarks
–! COO ballots on changes, meetings, to settle disputes...

10/27/08 47

Availability benchmark methodology

•! Goal: quantify variation in QoS metrics as events occur
 that affect system availability

•! Use fault injection to compromise system
–! hardware faults (disk, memory, network, power)

–! software faults (corrupt input, driver error returns)

–! maintenance events (repairs, SW/HW upgrades)

•! Example: Inject error and see how RAID handled it

10/27/08 48

Time (minutes)

0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec

failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
e

r s
e

c
o

n
d

190

195

200

205

210

215

220

#
fa

ilu
re

s
 to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Example single-fault result

•! Compares Linux and Solaris reconstruction policies

–! Linux: minimal performance impact but longer window of vulnerability
 to second fault

–! Solaris: large perf. impact but restores redundancy fast

Linux

Solaris

Service

10/27/08 49

Reconstruction policy (2)

•! Linux: favors performance over data availability
–! automatically-initiated reconstruction, idle bandwidth

–! virtually no performance impact on application

–! very long window of vulnerability (>1hr for 3GB RAID)

•! Solaris: favors data availability over app. perf.
–! automatically-initiated reconstruction at high BW

–! as much as 34% drop in application performance

–! short window of vulnerability (10 minutes for 3GB)

•! Windows: favors neither!
–! manually-initiated reconstruction at moderate BW

–! as much as 18% app. performance drop

–! somewhat short window of vulnerability (23 min/3GB)

10/27/08 50

Outline

•! Magnetic Disks

•! RAID in the past

•! RAID in the present

•! Advanced Dependability/Reliability/Availability

•! I/O Benchmarks, Performance and Dependability

•! Intro to Queueing Theory

10/27/08 51

Introduction to Queueing Theory

•! Interested in evaluating the system while in equilibrium
–! Move past system startup

–! Arrivals = Departures

–! Queue won’t overflow

•! Once in equilibrium, what is the utilization and response time

•! Little’s Law:
Mean number tasks in system = arrival rate x mean response
 time

–! Observed by many, Little was first to prove

–! Applies to any system in equilibrium, as long as black box not creating or
 destroying tasks

Arrivals Departures

10/27/08 52

Deriving Little’s Law

•! Timeobserve = elapsed time that observe a system

•! Number
task

= number of (overlapping) tasks during Timeobserve!

•! Timeaccumulated = sum of elapsed times for each task

Then

•! Mean number tasks in system = Timeaccumulated / Timeobserve!

•! Mean response time = Timeaccumulated / Number
task!

•! Arrival Rate = Number
task / Timeobserve!

Factoring RHS of 1st equation

•! Timeaccumulated / Timeobserve = Timeaccumulated / Number
task

x !

Number
task

/ Timeobserve !

Then get Little’s Law:

•! Mean number tasks in system = Mean response time x
 Arrival Rate

10/27/08 53

A Little Queuing Theory (Inside the
 Black Box): Notation

•! Notation:
Timeserver average time to service a task
Average service rate = 1 / Timeserver (traditionally ")
Timequeue average time/task in queue
Timesystem average time/task in system

 = Timequeue + Timeserver
Arrival rate avg no. of arriving tasks/sec (traditionally #)

•! Lengthserver average number of tasks in service
Lengthqueue average length of queue
Lengthsystem = Lengthqueue + Lengthserver

•! Little’s Law: Lengthserver = Arrival rate x Timeserver
(Mean number tasks = arrival rate x mean service time)

Proc IOC Device

Queue server

System

10/27/08 54

Server Utilization

•! For a single server, service rate = 1 / Timeserver

•! Server utilization must be between 0 and 1, since
 system is in equilibrium (arrivals = departures);
 often called traffic intensity, traditionally $)

•! Server utilization
= mean number tasks in service
= Arrival rate x Timeserver

•! What is disk utilization if get 50 I/O requests per
 second for disk and average disk service time is
 10 ms (0.01 sec)?

•! Server utilization = 50/sec x 0.01 sec = 0.5

•! Or server is busy on average 50% of time

10/27/08 55

Time in Queue vs. Length of Queue

•! We assume First In First Out (FIFO) queue

•! Relationship of time in queue (Timequeue) to mean
 number of tasks in queue (Lengthqueue) ?

•! Timequeue = Lengthqueue x Timeserver
 + “Mean time to complete service of task

 when new task arrives if server is busy”

•! New task can arrive at any instant; how predict
 last part?

•! To predict performance, need to know sometime
 about distribution of events

10/27/08 56

Distribution of Random Variables

•! A variable is random if it takes one of a specified
 set of values with a specified probability

–! Cannot know exactly next value, but may know probability of all
 possible values

•! I/O Requests can be modeled by a random variable
 because OS normally switching between several
 processes generating independent I/O requests

–! Also given probabilistic nature of disks in seek and rotational delays

•! Can characterize distribution of values of a random
 variable with discrete values using a histogram

–! Divides range between the min & max values into buckets

–! Histograms then plot the number in each bucket as columns

–! Works for discrete values e.g., number of I/O requests?

•! What about if not discrete? Very fine buckets

10/27/08 57

Characterizing distribution of a random
 variable

•! Need mean time and a measure of variance

•! For mean, use weighted arithmetic mean (WAM):

•! fi = frequency of task i

•! Ti = time for tasks I

weighted arithmetic mean
= f1"T1 + f2"T2 + . . . +fn"Tn

•! For variance, instead of standard deviation, use
 Variance (square of standard deviation) for WAM:

•! Variance = (f1"T12 + f2"T22 + . . . +fn"Tn2) – WAM2

–! Problem - If time is miliseconds, Variance units are square
 milliseconds!?!?

•! Got a unitless measure of variance?

10/27/08 58

Squared Coefficient of Variance (C2)

•! Get rid of squared time

–! C2 = Variance / WAM2

! C = sqrt(Variance)/WAM = StDev/WAM

–! Unitless measure

•! Trying to characterize random events, but need distribution of
 random events with tractable math

•! Most popular such distribution is exponential distribution,
 where C = 1

•! Note using constant to characterize variability about the mean

–! Invariance of C over time ! history of events has no impact on probability
 of an event occurring now

–! Called memoryless, an important assumption to predict behavior

–! (Suppose not; then have to worry about the exact arrival times of requests
 relative to each other ! make math not tractable!)

–! Assumptions are made to make math tractable, but works better than it
 might appear

10/27/08 59

Poisson Distribution

•! Most widely used exponential distribution is
 Poisson

•! Described by probability mass function:

 Probability (k) = e-a x ak / k!
–!where a = Rate of events x Elapsed time

•! If interarrival times are exponentially
 distributed & use arrival rate from above for
 rate of events, then the number of arrivals in
 time interval t is a Poisson process

10/27/08 60

Time in Queue - Residual Waiting
 Time

•! Time new task must wait for server to
 complete a task assuming server busy
–!Assuming it’s a Poisson process

•!Average residual service time
= % x Arithmetic mean x (1 + C2)
–!When distribution is not random & all values are

 exactly the average

 ! standard deviation is 0 ! C is 0
! average residual service time
 = half average service time

–!When distribution is random & Poisson ! C is 1
 ! average residual service time
 = weighted arithmetic mean

10/27/08 61

Time in Queue

•! All tasks in queue (Lengthqueue) ahead of new task must be
 completed before task can be serviced

–! Each task takes on average Timeserver

–! Task at server takes average residual service time to complete

•! Chance server is busy is server utilization
! expected time for service is Server utilization " Average
 residual service time

•! Timequeue = Lengthqueue x Timeserver
+ Server utilization x Average residual service time

•! Substituting definitions for Lengthqueue, Average residual
 service time, & rearranging:

 Timequeue = Timeserver
 x Server utilization/(1-Server utilization)

•! So, given a set of I/O requests, you can determine how many
 disks you need

10/27/08 62

M/M/1 Queuing Model

•! System is in equilibrium
•! Times between 2 successive requests arriving,

 “interarrival times”, are exponentially distributed
•! Number of sources of requests is unlimited

 “infinite population model”
•! Server can start next job immediately
•! Single queue, no limit to length of queue, and FIFO

 discipline, so all tasks in line must be completed
•! There is one server
•! Called M/M/1 (book also derives M/M/m)

1.$ Exponentially random request arrival (C2 = 1)

2.$ Exponentially random service time (C2 = 1)

3.$ 1 server

–! M standing for Markov, mathematician who defined and
 analyzed the memoryless processes

10/27/08 63

Example

•! 40 disk I/Os / sec, requests are exponentially distributed, and
 average service time is 20 ms

! Arrival rate/sec = 40, Timeserver = 0.02 sec

1.$ On average, how utilized is the disk?

•! Server utilization = Arrival rate " Timeserver
 = 40 x 0.02 = 0.8 = 80%

2.$ What is the average time spent in the queue?

•! Timequeue = Timeserver
 x Server utilization/(1-Server utilization)

 = 20 ms x 0.8/(1-0.8) = 20 x 4 = 80 ms

3.$ What is the average response time for a disk request, including
 the queuing time and disk service time?

•! Timesystem=Timequeue + Timeserver = 80+20 ms = 100 ms

10/27/08 64

How much better with 2X faster disk?

•! Average service time is 10 ms

! Arrival rate/sec = 40, Timeserver = 0.01 sec

1.$ On average, how utilized is the disk?

•! Server utilization = Arrival rate " Timeserver
 = 40 x 0.01 = 0.4 = 40%

2.$ What is the average time spent in the queue?

•! Timequeue = Timeserver
 x Server utilization/(1-Server utilization)

 = 10 ms x 0.4/(1-0.4) = 10 x 2/3 = 6.7 ms

3.$ What is the average response time for a disk request,
 including the queuing time and disk service time?

•! Timesystem=Timequeue + Timeserver=6.7+10 ms = 16.7 ms

•! 6X faster response time with 2X faster disk!

10/27/08 65

Value of Queueing Theory in practice

•! Learn quickly do not try to utilize resource 100%
 but how far should back off?

•! Allows designers to decide impact of faster
 hardware on utilization and hence on response
 time

•! Works surprisingly well

