
EEL 5764: Graduate Computer Architecture

 Introduction

Ch 1 - Fundamentals of Computer Design

These slides are provided by:

David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross

Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

9/3/09 2

EEL 5764
Instructor: Ann Gordon-Ross

 Office: 221 Larsen Hall, ann@ece.ufl.edu

 Office Hours: Tues 8:30-9:30 am and 2:45-3:45 pm

Text: Computer Architecture: A Quantitative Approach, 4th
 Edition (Oct, 2006)

Web page: linked from http://www.ann.ece.ufl.edu/

Communication: When sending email, include [EEL5764] in the
 subject line.

9/3/09 3

Course Information

•! Prerequisites
–! Basic UNIX/LINUX OS and compiler knowledge

–! High-level languages and data structures

–! Programming experience with C and/or C++

–! Assembly language

•! Academic Integrity and Collaboration Policy
–! Homework

–! Project

–! General

•! Reading
–! Textbook

–! Technical research papers for project optimization

9/3/09 4

Course Components

•! Midterms - 60%
–! 2 midterms

»! One after chapter 4

»! One after chapter 6

•! Project - 40%

•! Homework - 0%
–! I will assign homeworks and it is your responsibility to complete

 them before the due date (solutions will be provided)

–! Take this seriously! It WILL help you on the midterms

9/3/09 5

Project - ISS (Part 1)

•! ISS for your own custom assembly language
–! Reads in program in intermediate format

–! Pipelined (5 stage) and cycle accurate

–! Must deal with data and control hazards

–! Must implement any potential pipeline forwarding and
 resource sharing (register file) to minimize stall cycles

–! Outputs any computed values in registers or memory to verify
 functionality

•! Assembler
–! Input = assembly code

–! Output = intermediate format (opcodes and addresses)

•! Testing
–! You will need to write applications

–! Matrix multiple, GCD, etc

9/3/09 6

Project - ISS + Optimization (Part 2)

•! Implement an architectural optimization of your
 choice

–! Shouldn’t implement an existing technique exactly

»! New idea

»! Take existing idea and improve and/or modify

–! Do research to see what else has been done

»! Choose an area, survey papers

»! Related work section of your final paper

–! Quantify your optimization

»! Choose a metric to show change
•! I.E. CPI, area, power/energy, etc

»! Not graded on how much better your technique is

•! Research paper and presentation
–! Preparation for being a grad student

9/3/09 7

Project - Grading

•! Part 1
–! Due Oct 23

–! Make an appointment to demo what you turned in within the
 next 3-4 weeks

»! 30 minutes

»! Pass provided test cases and surprise test vectors (same
 program, different inputs)

»! Provide useful custom benchmarks and pass your test
 vectors

»! Organization of demo

»! Organization of code including good standard
 programming principles an sufficient comments
/documentation.

•! Part 2
–! Due Dec 4

–! No demo, not enough time with so many students

9/3/09 8

Project - Grading

•! Part 2
–! Due Dec 4

–! Make an appointment to demo what you turned in during
 finals week

»! 30 minutes

»! Describe optimization and how it dffers from previous
 work

»! How did you modify your ISS to simulate the optimization

»! How did you quantify your optimization.

»! Demo ISS both with and without optimization, showing
 your results

9/3/09 9

Course Focus

Understanding the design techniques, machine
 structures, technology factors, evaluation
 methods that will determine the form of
 computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
 Evaluation

Parallelism

Computer Architecture:
• Organization
• Hardware/Software Boundary

Compilers

9/3/09 10

Outline

•! Classes of Computers

•! Computer Science at a Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 11

Classes of Computers

•! Three main classes of computers
–! Desktop Computing

–! Servers

–! Embedded Computing

•! Goals and challenges for each class differ

9/3/09 12

Classes of Computers

Price of
 system

Price of
 micro

-
processor
 module

Critical system design issues

Desktop $500
-$5,000

$50-$500 •!Price-performance

•!Graphics performance

Server $5,000
-$5,000,000

$200
-$10,000

•!Throughput

•!Availability/Dependability

•!Scalability

Embedded $10
-$100,000

$0.01
-$100

•!Price

•!Power consumption

•!Application-specific performance
 (8- to 32-bit common)

9/3/09 13

Outline

•! Classes of Computers

•! Computer Science at a Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 14

•! Old Conventional Wisdom: Power is free, Transistors
 expensive

•! New Conventional Wisdom: “Power wall” Power expensive,
 Xtors free
(Can put more on chip than can afford to turn on)

•! Old CW: Sufficiently increasing Instruction Level
 Parallelism via compilers, innovation

–! Code just kept running faster

–! Software designers did nothing, compiler writers and architects did it

»! Out-of-order execution, speculation execution, VLIW, superscalar,
 pipelining, etc

•! New CW: “ILP wall” law of diminishing returns on more HW
 for ILP

•! Old CW: Multiplies are slow, Memory access is fast

•! New CW: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

Crossroads: Conventional Wisdom in Comp. Arch

9/3/09 15

•! Old CW: Uniprocessor performance 2X / 1.5 yrs
–! Sold computers based on clock speed – higher meant better?

•! New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall
–! Uniprocessor performance now 2X / 5(?) yrs

 ! Sea change in chip design: multiple “cores”
 (2X processors per chip / ~ 2 years)

»! Can’t just wait for clock frequency to increase anymore

»! More simpler processors are more power efficient

»! Canceled products

Crossroads: Conventional Wisdom in Comp. Arch

9/3/09 16

Crossroads: Uniprocessor Performance

•! VAX : 25%/year 1978 to 1986
•! RISC + x86: 52%/year 1986 to 2002
•! RISC + x86: !20%/year 2002 to 2006

From Hennessy and Patterson, Computer

 Architecture: A Quantitative Approach, 4th

 edition, October, 2006!
!20%/year

9/3/09 17

Sea Change in Chip Design

•! Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

•! Processor is the new transistor? Can we have the
same number of processors as there were

transistors on the first chip?

•! RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

•! 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

–! RISC II shrinks to ~ 0.02 mm2 at 65 nm

–! Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?

–! Proximity Communication via capacitive coupling at > 1 TB/s ?
(Ivan Sutherland @ Sun / Berkeley)

9/3/09 18

Déjà vu all over again?

•! Multiprocessors imminent in 1970s, ‘80s, ‘90s, … (some
 progress)

•! “… today’s processors … are nearing an impasse as
 technologies approach the speed of light..”

David Mitchell, The Transputer: The Time Is Now (1989)

•! Transputer was premature
! Custom multiprocessors strove to lead uniprocessors
! Procrastination rewarded: 2X seq. perf. / 1.5 years

•! “We are dedicating all of our future product development to
 multicore designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2004)

•! Difference now is all microprocessor companies switch to
 multiprocessors (AMD, Intel, IBM, Sun)
! Procrastination penalized: 2X sequential perf. / 5 yrs
! Biggest programming challenge: 1 to 2 CPUs

9/3/09 19

Problems with Sea Change

•! Past efforts were half-hearted attempts

•! Software not prepared
–! Algorithms, Programming Languages, Compilers, Operating

 Systems, Architectures, Libraries, … not ready to supply Thread
 Level Parallelism or Data Level Parallelism for 1000 CPUs / chip,

–! Need all new styles

–! Field of dreams approach

•! Architectures not ready for 1000 CPUs / chip
•! Cannot be solved by by computer architects and compiler writers

 alone, but also cannot be solved without participation of
 computer architects

•! Computer Architecture: A Quantitative Approach -
 explores shift from Instruction Level Parallelism to
 Thread Level Parallelism / Data Level Parallelism

9/3/09 20

Outline

•! Classes of Computers

•! Computer Science at a Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 21

Instruction Set Architecture: Critical Interface

instruction set

software

hardware

•! Properties of a good abstraction
–! Lasts through many generations (portability)

–! Used in many different ways (generality)

–! Provides convenient functionality to higher levels

–! Permits an efficient implementation at lower levels

9/3/09 22

Example: MIPS
0 r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage

 2^32 x bytes

 31 x 32-bit GPRs (R0=0)

 32 x 32-bit FP regs (paired DP)

 HI, LO, PC

Data types ?

Format ?

Addressing Modes?

Arithmetic logical

 Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,

 AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI

 SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access

 LB, LBU, LH, LHU, LW, LWL,LWR

 SB, SH, SW, SWL, SWR

Control

 J, JAL, JR, JALR

 BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

9/3/09 23

Instruction Set Architecture

“... the attributes of a [computing] system as seen by the
 programmer, i.e. the conceptual structure and functional
 behavior, as distinct from the organization of the data flows and
 controls the logic design, and the physical implementation.”
 – Amdahl, Blaauw, and Brooks, 1964

-- Organization of Programmable
 Storage

-- Data Types & Data Structures:
 Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

Basically, one ISA suitable for different architectures

9/3/09 24

ISA vs. Computer Architecture

•! Old definition of computer architecture
= instruction set design

–! Other aspects of computer design called implementation

–! Is implementation uninteresting or less challenging?

•! Our view is computer architecture is much more
 than the ISA

•! Architect’s job much more than instruction set
 design; technical hurdles today more challenging
 than those in instruction set design

•! Since instruction set design not where action is,
 some conclude computer architecture (using old
 definition) is not where action is

–! Disagree on conclusion

–! Agree that ISA not where action is (ISA in CA:AQA 4/e appendix)

9/3/09 25

Comp. Arch. is an Integrated Approach

•! What really matters is the functioning of the complete
 system

–! hardware, runtime system, compiler, operating system, and
 application all working together

–! In networking, this is called the “End to End argument”

•! Computer architecture is not just about transistors,
 individual instructions, or particular implementations

9/3/09 26

Computer Architecture is
Design and Analysis

Design

Ana lys is

Architecture is an iterative process:
•! Searching the space of possible designs
•! Hardware is hard and expensive
•! At all levels of computer systems

Creativity

Mediocre Ideas
Bad Ideas

Cost /
Performance
Analysis

9/3/09 27

Outline

•! Classes of Computers Computer Science at a
 Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 28

What Computer Architecture brings to Table

•! Other fields often borrow ideas from architecture
–! Ideas happen here first

–! Google hires architects

»! Data centers can be considered as large computer and
 architects bring a new understanding to data center
 operation and organization

•! Quantitative Principles of Design
1.! Take Advantage of Parallelism

2.! Principle of Locality

3.! Focus on the Common Case

4.! Amdahl’s Law

5.! The Processor Performance Equation

9/3/09 29

What Computer Architecture brings to Table

•! Careful, quantitative comparisons – Numbers
 driven field
–! Define, quantity, and summarize relative performance

–! Define and quantity relative cost

–! Define and quantity dependability

–! Define and quantity power

•! Culture of anticipating and exploiting advances in
 technology
–! Always at the forefront of technologies

–! I.e. Designing chips that won’t be release for several years

•! Culture of well-defined interfaces that are carefully
 implemented and thoroughly checked
–! Must work the first time, unlike software which can be updated

 or changed

–! Different mindset for hardware designers, cultural differences

»! I.e. SW vs. HW RAID

9/3/09 30

1) Taking Advantage of Parallelism

•! Increasing throughput of server computer via
 multiple processors or multiple disks

•! Detailed HW design
–! Carry lookahead adders uses parallelism to speed up computing

 sums from linear to logarithmic in number of bits per operand

–! Multiple memory banks searched in parallel in set-associative
 caches

•! Pipelining: overlap instruction execution to reduce
 the total time to complete an instruction sequence.

–! Not every instruction depends on immediate predecessor !
 executing instructions completely/partially in parallel possible

–! Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

9/3/09 31

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

9/3/09
32

Limits to pipelining

•! Hazards prevent next instruction from executing
 during its designated clock cycle

–! Structural hazards: attempt to use the same hardware to do two
 different things at once I.e. caches, ALUs in multiple pipeline
 stages

–! Data hazards: Instruction depends on result of prior instruction
 still in the pipeline

–!Control hazards: Caused by delay between the fetching of
 instructions and decisions about changes in control flow
 (branches and jumps).

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg

A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg

A
LU

DMem Ifetch Reg

9/3/09 33

2) The Principle of Locality

•! The Principle of Locality:
–! Program access a relatively small portion of the address space at

 any instant of time.

•! Two Different Types of Locality:
–! Temporal Locality (Locality in Time): If an item is referenced, it will

 tend to be referenced again soon (e.g., loops, reuse)

–! Spatial Locality (Locality in Space): If an item is referenced, items
 whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

•! Last 30 years, HW relied on locality for memory perf.

P MEM $

9/3/09 34

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytes Blocks

9/3/09 35

3) Focus on the Common Case

•! Common sense guides computer design
–! Since its engineering, common sense is valuable

•! Design trade-offs – favor frequent over infrequent
 case

–! E.g., Instruction fetch and decode unit used more frequently
 than multiplier, so optimize it 1st

–! E.g., Database server with 50 disks – processor and storage
 dependability dominates system dependability, so optimize it
 1st

•! Frequent case is often simpler and can be done
 faster than the infrequent case

–! E.g., Adding 2 numbers - overflow is rare so optimizing more
 common case of no overflow

–! May slow down overflow, but overall performance improved by
 optimizing for the normal case

•! What is frequent case and how much performance
 improved by making case faster => Amdahl’s Law

9/3/09 36

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime

ExTime
 Speedup

+!

==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1
 Speedup =

() !
"

#
$
%

&
+'(=

enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

9/3/09 37

Amdahl’s Law example

•! New CPU 10X faster

•! I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall

==

+!

=

+!

=

•! Apparently, its human nature to be attracted by 10X
 faster, vs. keeping in perspective its just 1.6X
 faster

9/3/09 38

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds

 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

9/3/09 39

What’s a Clock Cycle?

•! Old days: 10 levels of gates

•! Today: determined by numerous time-of-flight
 issues + gate delays

–! clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

9/3/09 40

Outline

•! Classes of Computers Computer Science at a
 Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 41

Trends in IC Technology

•! The most important trend in embedded systems -
 Moore’s Law

–! Predicted in 1965 by Intel co-founder Gordon Moore

–! IC transistor capacity has doubled roughly every 18-24
 months for the past several decades

10,000

1,000

100

10

1

0.1

0.01

0.001

Logic transistors

 per chip

(in millions)

1
9
8
1

1
9
8
3

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

2
0
0
7

2
0
0
9

9/3/09 42

Moore’s Law

•! This growth rate is hard to imagine, most people
 underestimate

–! i.e. Yahoo

•! How many ancestors do you have from 20
 generations ago

–! I.e. roughly how many people alive in the 1500’s did it take to
 make you

–! 220 = more than 1 million people

•! This underestimation is the key to pyramid
 schemes!

9/3/09 43

Graphical Illustration of Moore’s Law

•! Something the doubles frequently grows more
 quickly than most people realize

–! A 2002 chip can hold about 15,000 1981 chips inside itself

1981 1984 1987 1990 1993 1996 1999 2002

Leading edge

chip in 1981

10,000

transistors

Leading edge

chip in 2002

150,000,000

transistors

9/3/09 44

Tracking Technology Performance Trends

•! Track 4 main technologies:
–! Disks

–! Memory

–! Network

–! Processors

•! Compare ~1980 Archaic (Nostalgic) vs.
~2000 Modern (Newfangled)

–! Performance Milestones in each technology

•! Compare for Bandwidth vs. Latency improvements
 in performance over time

•! Bandwidth: number of events per unit time
–! E.g., M bits / second over network, M bytes / second from disk

•! Latency: elapsed time for a single event
–! E.g., one-way network delay in microseconds,

average disk access time in milliseconds

9/3/09 45

Disks: Archaic(Nostalgic) v. Modern(Newfangled)

•! Seagate 373453, 2003

•! 15000 RPM (4X)

•! 73.4 GBytes (2500X)

•! Tracks/Inch: 64000 (80X)

•! Bits/Inch: 533,000 (60X)

•! Four 2.5” platters
(in 3.5” form factor)

•! Bandwidth:
86 MBytes/sec (140X)

•! Latency: 5.7 ms (8X)

•! Cache: 8 MBytes

•! CDC Wren I, 1983

•! 3600 RPM

•! 0.03 GBytes capacity

•! Tracks/Inch: 800

•! Bits/Inch: 9550

•! Three 5.25” platters

•! Bandwidth:
0.6 MBytes/sec

•! Latency: 48.3 ms

•! Cache: none

9/3/09 46

Latency Lags Bandwidth (for last ~20 years)

•! Performance Milestones

•! Disk: 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)
(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Disk

(Latency improvement
= Bandwidth improvement)

9/3/09 47

Memory: Archaic (Nostalgic) v. Modern (Newfangled)

•! 1980 DRAM
(asynchronous)

•! 0.06 Mbits/chip

•! 64,000 xtors, 35 mm2

•! 16-bit data bus per
 module, 16 pins/chip

•! 13 Mbytes/sec

•! Latency: 225 ns

•! (no block transfer)

•! 2000 Double Data Rate Synchr.
(clocked) DRAM

•! 256.00 Mbits/chip (4000X)

•! 256,000,000 xtors, 204 mm2

•! 64-bit data bus per
DIMM, 66 pins/chip (4X)

•! 1600 Mbytes/sec (120X)

•! Latency: 52 ns (4X)

•! Block transfers (page mode)

9/3/09 48

Latency Lags Bandwidth (last ~20 years)

•! Performance Milestones

•! Memory Module: 16bit plain
 DRAM, Page Mode DRAM,
 32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

•! Disk: 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Memory
Disk

(Latency improvement
= Bandwidth improvement)

9/3/09 49

LANs: Archaic (Nostalgic)v. Modern (Newfangled)

•! Ethernet 802.3

•! Year of Standard: 1978

•! 10 Mbits/s
link speed

•! Latency: 3000 µsec

•! Shared media

•! Coaxial cable

•! Ethernet 802.3ae

•! Year of Standard: 2003

•! 10,000 Mbits/s (1000X)
link speed

•! Latency: 190 µsec (15X)

•! Switched media

•! Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick,

Twisted Pair:

"Cat 5" is 4 twisted pairs in bundle

9/3/09 50

Latency Lags Bandwidth (last ~20 years)

•! Performance Milestones

•! Ethernet: 10Mb, 100Mb,
 1000Mb, 10000 Mb/s (16x,1000x)

•! Memory Module: 16bit plain
 DRAM, Page Mode DRAM,
 32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

•! Disk: 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

9/3/09 51

CPUs: Archaic (Nostalgic) v. Modern (Newfangled)

•! 1982 Intel 80286

•! 12.5 MHz

•! 2 MIPS (peak)

•! Latency 320 ns

•! 134,000 xtors, 47 mm2

•! 16-bit data bus, 68 pins

•! Microcode interpreter,
separate FPU chip

•! (no caches)

•! 2001 Intel Pentium 4

•! 1500 MHz (120X)

•! 4500 MIPS (peak) (2250X)

•! Latency 15 ns (20X)

•! 42,000,000 xtors, 217 mm2

•! 64-bit data bus, 423 pins

•! 3-way superscalar,
Dynamic translate to RISC,
 Superpipelined (22 stage),
Out-of-Order execution

•! On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

9/3/09 52

Latency Lags Bandwidth (last ~20 years)

•! Performance Milestones

•! Processor: ‘286, ‘386, ‘486,
 Pentium, Pentium Pro,
 Pentium 4 (21x,2250x)

•! Ethernet: 10Mb, 100Mb,
 1000Mb, 10000 Mb/s (16x,1000x)

•! Memory Module: 16bit plain
 DRAM, Page Mode DRAM,
 32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

•! Disk : 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative

BW

Improve

ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

CPU high,
Memory low
(“Memory
Wall”)

9/3/09 53

Rule of Thumb for Latency Lagging BW

•! In the time that bandwidth doubles, latency
 improves by no more than a factor of 1.2 to
 1.4

(and capacity improves faster than bandwidth)

•! Stated alternatively:
Bandwidth improves by more than the square
 of the improvement in Latency

9/3/09 54

6 Reasons Latency Lags Bandwidth

1. Moore’s Law helps BW more than latency
•! Faster transistors, more transistors,

more pins help Bandwidth

»! MPU Transistors: 0.130 vs. 42 M xtors (300X)

»! DRAM Transistors: 0.064 vs. 256 M xtors (4000X)

»! MPU Pins: 68 vs. 423 pins (6X)

»! DRAM Pins: 16 vs. 66 pins (4X)

•! Smaller, faster transistors but communicate
over (relatively) longer lines: limits latency

»! Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X)

»! MPU Die Size: 35 vs. 204 mm2 (ratio sqrt ! 2X)

»! DRAM Die Size: 47 vs. 217 mm2 (ratio sqrt ! 2X)

9/3/09 55

6 Reasons Latency Lags Bandwidth (cont’d)

2. Distance limits latency
•! Size of DRAM block ! long bit and word lines

! most of DRAM access time

•! Speed of light and computers on network

•! 1. & 2. explains linear latency vs. square BW?

3. Bandwidth easier to sell (“bigger=better”)
•! E.g., 10 Gbits/s Ethernet (“10 Gig”) vs.

 10 µsec latency Ethernet

•! 4400 MB/s DIMM (“PC4400”) vs. 50 ns latency

•! Even if just marketing, customers now trained

•! Since bandwidth sells, more resources thrown at bandwidth,
 which further tips the balance

9/3/09 56

4. Latency helps BW, but not vice versa
•! Spinning disk faster improves both bandwidth and

 rotational latency

»! 3600 RPM ! 15000 RPM = 4.2X

»! Average rotational latency: 8.3 ms ! 2.0 ms

»! Things being equal, also helps BW by 4.2X

•! Lower DRAM latency !
More access/second (higher bandwidth)

•! Higher linear density helps disk BW
 (and capacity), but not disk Latency

»! 9,550 BPI ! 533,000 BPI ! 60X in BW

6 Reasons Latency Lags Bandwidth (cont’d)

9/3/09 57

5. Bandwidth hurts latency
•! Queues help Bandwidth, hurt Latency (Queuing Theory)

•! Adding chips to widen a memory module increases
 Bandwidth but higher fan-out on address lines may
 increase Latency

6. Operating System overhead hurts
Latency more than Bandwidth

•! Long messages amortize overhead;
overhead bigger part of short messages

6 Reasons Latency Lags Bandwidth (cont’d)

9/3/09 58

Summary of Technology Trends

•! For disk, LAN, memory, and microprocessor,
 bandwidth improves by square of latency
 improvement

–! In the time that bandwidth doubles, latency improves by no more
 than 1.2X to 1.4X

•! Lag probably even larger in real systems, as
 bandwidth gains multiplied by replicated components

–! Multiple processors in a cluster or even in a chip

–! Multiple disks in a disk array

–! Multiple memory modules in a large memory

–! Simultaneous communication in switched LAN

•! HW and SW developers should innovate assuming
 Latency Lags Bandwidth

–! If everything improves at the same rate, then nothing really changes

–! When rates vary, require real innovation

9/3/09 59

Outline

•! Classes of Computers Computer Science at a
 Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 60

Define and quantify cost (1/2)

•! 3 factors lower costs:

1.! Learning curve - manufacturing costs decrease over
 time (more efficient) measured by change in yield
•! % manufactured devices that survives the testing procedure

2.! Volume – Rule of Thumb – double volume cuts cost 10%
•! Decrease time to get down the learning curve

•! Increases purchasing and manufacturing efficiency

•! Amortizes development (NRE) costs over more devices

3.! Commodities - reduce costs by reducing margins
•! Competition is good, price fixing changes but is illegal

•! Produces sold by multiple vendors in large values are essentially
 identical

•! E.g.; Keyboards, monitors, DRAMs, disks, PCs

•! Most of computer cost in integrated circuit
•! Cost of producing chips

•! Die cost + packaging cost + testing cost

9/3/09 61

Define and quantify cost (2/2)

•! Margin = Price product sells - cost to manufacture

•! Margins pay for research and development (R&D),
 marketing, sales, manufacturing equipment,
 maintenance, building rental, cost of financing,
 pretax profits, and taxes

•! Most companies spend 4% (commodity PC
 business) to 12% (high-end server business) of
 income on R&D, which includes all engineering

9/3/09 62

Outline

•! Classes of Computers Computer Science at a
 Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 63

Define and quantity power (1 / 2)

•! For CMOS chips, traditional dominant energy consumption
 has been in switching transistors, called dynamic power

witchedFrequencySVoltageLoadCapacitivePowerdynamic !!!=
2

2/1

•! For mobile devices, energy better metric

VoltageLoadCapacitiveEnergydynamic
2

!=

•! Capacitive load is a function of the number of
 transistors connected to the output and the
 technology, which determines capacitance of wires
 and transistors

•! Dropping voltage helps both, so went from 5V to 1V

•! For a fixed task, slowing clock rate (frequency
 switched) reduces power, but not energy

•! To save energy & dynamic power, most CPUs now
 turn off clock of inactive modules (e.g. Fl. Pt. Unit) 9/3/09 64

Example of quantifying power

•! Suppose 15% reduction in voltage results in a 15%
 reduction in frequency. What is impact on dynamic
 power?

!

Powernew

Powerold
=
(Voltage* .85)

2
* (FrequencySwitched * .85)

Voltage
2
*FrequencySwitched

Powernew

Powerold
= .85

3
= .61

•! 2 simpler (lower capacitance), slower cores (lower
 frequency) could replace 1 complex core for same
 power per chip

9/3/09 65

Define and quantity power (2 / 2)

•! Because leakage current flows even when a
 transistor is off, now static power important too

•! Leakage current increases in processors with
 smaller transistor sizes

•! Increasing the number of transistors increases
 power even if they are turned off

•! In 2006, goal for leakage is 25% of total power
 consumption; high performance designs at 40%

•! Very low power systems even gate voltage to
 inactive modules to control loss due to leakage

VoltageCurrentPower staticstatic !=

9/3/09 66

Outline

•! Classes of Computers Computer Science at a Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking, anticipating and
 exploiting advances in technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 67

Define and quantity dependability (1/3)

•! When is a system is operating properly?

•! Infrastructure providers now offer Service Level
 Agreements (SLA) to guarantee that their
 networking or power service would be
 dependable
–! Contract, give money for outages beyond what is stated

•! Systems alternate between 2 states of service with
 respect to an SLA:

1.! Service accomplishment, where the service is
 delivered as specified in SLA

2.! Service interruption, where the delivered service is
 different from the SLA

•! Failure = transition from state 1 to state 2

•! Restoration = transition from state 2 to state 1
9/3/09 68

Define and quantity dependability (2/3)

•! Module reliability = measure of continuous service
 accomplishment (or time to failure).
 2 metrics

1.! Mean Time To Failure (MTTF) measures reliability
 (usually in hours)

2.! Failures In Time (FIT) = 1/MTTF, the rate of failures
•! Traditionally reported as failures per billion hours of operation

•! Mean Time To Repair (MTTR) measures Service
 Interruption
–! Mean Time Between Failures (MTBF) = MTTF+MTTR

•! Module availability measures service as alternate
 between the 2 states of accomplishment and
 interruption (number between 0 and 1, e.g. 0.9)

•! Module availability = MTTF / (MTTF + MTTR)

9/3/09 69

Example calculating reliability

•! If modules have exponentially distributed
 lifetimes (age of module does not affect
 probability of failure), overall failure rate is the
 sum of failure rates of the modules

•! Calculate FIT and MTTF for 10 disks (1M hour
 MTTF per disk), 1 disk controller (0.5M hour
 MTTF), and 1 power supply (0.2M hour MTTF):

hours

MTTF

FIT

eFailureRat

000,59

000,17/000,000,000,1

000,17

000,000,1/17

000,000,1/5210

000,200/1000,500/1)000,000,1/1(10

!

=

=

=

++=

++"=

9/3/09 70

Focus on common case

•! Power supply MTTF limits system MTTF

•! What if added redundant power supply, so system still
 works if one fails?

•! MTTF of pair is now mean time until one power supply
 fails divided by chance of other will fail before 1st is
 replaced

•! Since 2 power supplies and independent failures, mean
 time to one power supply fails is MTTFpowersupply/2

!

MTTFpairps =
MTTFps /2

MTTRps

MTTFps

=
MTTF

2
ps /2

MTTRps

=
MTTFps

2

2*MTTR ps

9/3/09 71

Example recalculating reliability

•! Calculate FIT and MTTF for 10 disks (1M hour MTTF per
 disk), 1 disk controller (0.5M hour MTTF), 2 power supplies
 (0.2 M hour MTTF), and MTTR for replacing a failed power
 supply is 1 day. How much better is MTTFpair? MTTFsystem?

!

MTTFpair =
200,000

2

2*24
= 830,000,000

!

FailureRate =
10

1,000,000
+

1

5,000,000
+

1

830,000,000

!

=
10 + 2 + 0

1,000,000
=

12

1,000,000
=12,000FIT

!

MTTF =
1,000,000,000

12,000
= 83,000hours

•! MTTFpair 4200x; MTTF system is 1.4x; Amdahl’s Law!
9/3/09 72

Outline

•! Classes of Computers Computer Science at a
 Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 73

 Performance(X) Execution_time(Y)

 n = =

 Performance(Y) Execution_time(X)

Definition: Performance

•!Performance is in units of things per sec
–!bigger is better

•! If we are primarily concerned with response time

performance(x) = 1
 execution_time(x)

" X is n times faster than Y" means

9/3/09 74

Performance: What to measure

•! Usually rely on benchmarks vs. real workloads

•! To increase predictability, collections of benchmark
 applications, called benchmark suites, are popular

•! SPECCPU: popular desktop benchmark suite
–! CPU only, split between integer and floating point programs

–! SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms

–! SPECCPU2006 to be announced Spring 2006

–! SPECSFS (NFS file server) and SPECWeb (WebServer) added as
 server benchmarks

•! Transaction Processing Council measures server
 performance and cost-performance for databases

–! TPC-C Complex query for Online Transaction Processing

–! TPC-H models ad hoc decision support

–! TPC-W a transactional web benchmark

–! TPC-App application server and web services benchmark

9/3/09 75

How Summarize Suite Performance (1/5)

•! Arithmetic average of execution time of all pgms?
–! But they vary by 4X in speed, so some would be more important

 than others in arithmetic average

•! Could add a weights per program, but how pick
 weight?

–! Different companies want different weights for their products

•! SPECRatio: Normalize execution times to reference
 computer, yielding a ratio proportional to
 performance =

time on reference computer

time on computer being rated

9/3/09 76

How Summarize Suite Performance (2/5)

•! If program SPECRatio on Computer A is 1.25 times
 bigger than Computer B, then

B

A

A

B

B

reference

A

reference

B

A

ePerformanc

ePerformanc

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

SPECRatio

SPECRatio

==

==25.1

•! Note that when comparing 2 computers as a ratio,
 execution times on the reference computer drop
 out, so choice of reference computer is irrelevant

9/3/09 77

How Summarize Suite Performance (3/5)

•! Since ratios, proper mean is geometric mean
(SPECRatio unitless, so arithmetic mean meaningless)

n

n

i

i
SPECRatioeanGeometricM !

=

=
1

1.! Geometric mean of the ratios is the same as the
 ratio of the geometric means

2.! Ratio of geometric means
= Geometric mean of performance ratios
! choice of reference computer is irrelevant!

•! These two points make geometric mean of ratios
 attractive to summarize performance

9/3/09 78

How Summarize Suite Performance (4/5)

•! Does a single mean well summarize performance of
 programs in benchmark suite?

•! Can decide if mean a good predictor by characterizing
 variability of distribution using standard deviation

•! Like geometric mean, geometric standard deviation is
 multiplicative rather than arithmetic

•! Can simply take the logarithm of SPECRatios, compute
 the standard mean and standard deviation, and then
 take the exponent to convert back:

()

()()()i

n

i

i

SPECRatioStDevtDevGeometricS

SPECRatio
n

eanGeometricM

lnexp

ln
1

exp
1

=

!
"

#
$
%

&
'= (

=

9/3/09 79

How Summarize Suite Performance (5/5)

•! Standard deviation is more informative if know
 distribution has a standard form

–! bell-shaped normal distribution, whose data are symmetric
 around mean

–! lognormal distribution, where logarithms of data--not data
 itself--are normally distributed (symmetric) on a logarithmic
 scale

•! For a lognormal distribution, we expect that

68% of samples fall in range

95% of samples fall in range

•! Note: Excel provides functions EXP(), LN(), and
 STDEV() that make calculating geometric mean
 and multiplicative standard deviation easy

[]gstdevmeangstdevmean !,/

[]22
,/ gstdevmeangstdevmean !

9/3/09 80

Outline

•! Classes of Computers Computer Science at a
 Crossroads

•! Computer Architecture v. Instruction Set Arch.

•! What Computer Architecture brings to table

•! Technology Trends: Culture of tracking,
 anticipating and exploiting advances in
 technology

•! Careful, quantitative comparisons:
1.! Define and quantify cost

2.! Define and quantify power

3.! Define and quantify dependability

4.! Define, quantify , and summarize relative performance

•! Fallacies and Pitfalls

9/3/09 81

Fallacies and Pitfalls (1/2)

•! Fallacies - commonly held misconceptions
–! When discussing a fallacy, we try to give a counterexample.

•! Pitfalls - easily made mistakes.
–! Often generalizations of principles true in limited context
–! Show Fallacies and Pitfalls to help you avoid these errors

•! Fallacy: Benchmarks remain valid indefinitely
–!Once a benchmark becomes popular, tremendous

 pressure to improve performance by targeted
 optimizations or by aggressive interpretation of the
 rules for running the benchmark:
 “benchmarksmanship.”

–! 70 benchmarks from the 5 SPEC releases. 70% were
 dropped from the next release since no longer useful

•! Pitfall: A single point of failure
–!Rule of thumb for fault tolerant systems: make

 sure that every component was redundant so
 that no single component failure could bring
 down the whole system (e.g, power supply)

9/3/09 82

Fallacies and Pitfalls (2/2)

•! Fallacy - Rated MTTF of disks is 1,200,000 hours or
 " 140 years, so disks practically never fail

•! But disk lifetime is 5 years ! replace a disk every 5
 years; on average, 28 replacements wouldn't fail

•! A better unit: % that fail (1.2M MTTF = 833 FIT)

•! Fail over lifetime: if had 1000 disks for 5 years
= 1000*(5*365*24)*833 /109 = 36,485,000 / 106 = 37
= 3.7% (37/1000) fail over 5 yr lifetime (1.2M hr MTTF)

•! But this is under pristine conditions
–! little vibration, narrow temperature range ! no power failures

•! Real world: 3% to 6% of SCSI drives fail per year
–! 3400 - 6800 FIT or 150,000 - 300,000 hour MTTF [Gray & van Ingen 05]

•! 3% to 7% of ATA drives fail per year
–! 3400 - 8000 FIT or 125,000 - 300,000 hour MTTF [Gray & van Ingen 05]

