EEL 5764: Graduate Computer Architecture
Appendix A - Pipelining Review

Ann Gordon-Ross
Electrical and Computer Engineering
University of Florida

http://www.ann.ece.ufl.edu/

These slides are provided by:
David Patterson
Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Outline

* MIPS - An ISA for Pipelining
+ 5 stage pipelining

* Structural and Data Hazards
* Forwarding

* Branch Schemes

* Exceptions and Interrupts

9/10/09 3

What is Pipelining?

* Overlapping execution to produce faster results
— Washing and drying dishes
— Washing and drying laundry
— Automobile assembly line
— Chipotle, Quiznos, etc

* Pipelining in computer architecture
— Multiple instructions are overlapped in execution
— Exploits parallelism
— Not visible to programmer

» Each stage is a pipeline “cycle”

— Each stage happens simultaneously so results are produced
only as fast as the longest pipeline cycle

— Determines clock cycle time

9/10/09

~

A "Typical”™ RISC ISA (Load/Store)

+ 32-bit fixed format instruction (3 formats)
+ 32 32-bit GPR (RO contains zero)

* ALU instructions
— 3-address, reg-reg arithmetic instruction
— 2-address, reg-im arithmetic instruction

+ Single address mode for load/store:
base + displacement
— no indirection

» Simple branch conditions
* Delayed branch

9/10/09 4

Example: MIPS (- MIPS) = Datapath vs Control (FSM+D)

Register-Register Datapath Controller
31 26 25 2120 16 15 1110 65 0 —
| op [Rrst | Rz | Rd | | opx |
signals
Register-Immediate
31 26 25 2120 16 15 0 —
[op JRst | Rd | immediate | IZ::I
Branch
31 26 25 2120 16 15 [*]
I Op I Rsl k52/0p>l immediate I Control Points
Jump / Call
« Datapath: Storage, FU, interconnect sufficient to perform the
31 26 25 0 des#ed functio%s P
I Op I target I - Inputs are Control Points
— Outputs are signals
. Co?ﬁroller: State machine to orchestrate operation on the data
pa
9/10/09 5 9/10/05 Based on desired function and signals 6
Approaching an ISA Outline
* Instruction Set Architecture
— Defines set of operations, instruction format, hardware . : ini
supported data types, named storage, addressing modes, 5 Stage plpelmmg
sequencing * Structural and Data Hazards
* Meaning of each instruction is described by RTL + Forwarding

on architected registers and memory

Given technology constraints assemble adequate
datapath

— Architected storage mapped to actual storage

— Function units to do all the required operations

— Possible additional storage (eg. MAR, MBR, ...)

— Interconnect to move information among regs and FUs

* Implement controller (Finite State Machine (FSM))

* Branch Schemes
* Exceptions and Interrupts

9/10/09 7 9/10/09 8

5 Steps of MIPS Datapath

Figure A.2, Page A-8

Instruction Instr. Decode Execute Memory iWrite
Fetch Reg. Fetch Addr. Calc Access Back
Next PC
Next SEQ PC —
4
RS1

Eem I
—
d__Rs2 ._‘
]
A y RD
—

WB Data

[T=]

9/10/09 9

Inst. Set Processor Controller

IR <= mem[PC];
Ifetch
PC <= PC + 4
JSR A <= Reg[IR,]; opFetch-DCD
JR B <= Reg[IR.] ST
jmp
br _—————— Rr} —— R LD
if bop(A,b) | | PC <= IRjuu | | T <= A OPspep B | [T <= A OPep IRy, T <= A+ IRy
PC <= PC+IR; l l 1

] []
l l

Reg[IR,4] <= WB |

Reg[IR_4] <= WB | Reg[IR_4] <= WB |

9/10/09 11

5 Steps of MIPS Datapath

Figure A.3, Page A-9

Memory Write
Access | Back

Instruction Instr. Decode Execute
Fetch Reg. Fetch : Addr. Calc ;

Next PC

Next SEQ PC Next SEQ PC

4

IR <= mem|[PC] ;

PC <= PC + 4

A <= Reg[IR,_];

B <= Reg[IR,.]
rslt <= A Opp,, B

WB <= rslt

9/10/09. 10
Reg[IR,4] <= WB

Visualizing Pipelining
Figure A.2, Page A-8

Time (clock cycles)
Cycle 1§Cycle 2§Cycle 3§Cycle 4§Cycle 5 §Cycle 6:Cycle 7
I
o | T]
+ : : : H
r. rreren] B} | & |rﬁ omen| {4 #es |
o H ! H
. T w3 Sy T
e ; H H H
r =lEals
9/10/09 12

One Memory Port/Structural Hazards

Pipelining is not quite that easy! Fialte Ad. Fage A1d

Time (clock cycles)

« Limits to pipelining: Hazards prevent next instruction Cycle 1iCycle 2Cycle 3}Cycle 4iCycle 5E Cycle 6icycle 7i

I +ua N

ST0QYQ

from executing during its designated clock cycle
— Structural hazards: HW cannot support this combination of I |Load I .ml .2
instructions (single person to fold and put clothes away) n
— Data hazards: Instruction depends on result of prior instruction still s Fetc 2
in the pipeline (missing sock) 1 Instr 1 -I .ml - M m
— Control hazards: Caused by delay between the fetching of r. i
instructions and decisions about changes in control flow (branches Instr 2 | | [~ [] .2 oven E
and jumps). o H
o lInstr 31 “-I! {EH 3] mm
e :
rlmstr a0 FHAEHEHEPHHE
9/10/09 13 9/10/09 i i : : 14
One Memory Port/Structural Hazards . i
(Similar to Figure A.5, Page A-15) Performance of Pipelines with Stalls
Time (clock cycles) + Ideal CPI speedup is simply the pipeline depth
Cycle 1§Cycle 2 §Cycle 3§Cycle 4§Cycle 55 Cycle 6iCycle 7i — Assumes no stalls, perfect execution
« But, pipelining causes stalls and changes the
Load [lm‘ '2 o] E clock cycle time
T Average instruction time unpipelined
: f | =
Instr 1 l .ml .2 m E Speedup from pipelining Average instruction time pipelined
: : _ CPI unpipelined x Clock cycle unpipelined
Instr 2 CPI pipelined x Clock cycle time pipelined
Stall | Bubble)|[Bubble | Bubble JBubblal| (Bubble + Ideal CPl is 1
CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
Instr 3 | | IEI .2 M 5 | = 1 + Pipeline stall clock cycles per instruction
CPI unpipelined = Ideal CPI x pipeline depth

: : : : 5 i i = Pipeline depth
ondjpw do you “bubble” the pipe? 15 9/10/09 17

Performance of Pipelines with Stalls

» Lets ignore cycle time overhead for pipelining
and assume all stages are balanced, thus cycle
times for each are equal

CPI unpipelined

Speedup =
P P CPI pipelined

Pipeline depth

1+ Pipeline stall cycles per instruction

+ Assuming no pipeline stalls, speedup is equal to
pipeline depth.

» But, pipelining changes the clock cycle time
too....

9/10/09

Performance of Pipelines with Stalls

1 Clock cycle time unpipelined

Speedup from pipelining =

1 +Pipeline stall cycles per instruction Clock cycle time pipelined

1
1 +Pipeline stall cycles per instruction

x Pipeline Depth

* And again, if no stalls, ideal speedup is equal to
the pipeline depth

9/10/09

20

Performance of Pipelines with Stalls

* Pipelining reduces clock cycle time (increases
frequency) - less work to do in each stage

* CPl unpipelined is 1

Average instruction time unpipelined
Average instruction time pipelined

Speedup from pipelining =

_ CPI unpipelined x Clock cycle unpipelined
CPI pipelined x Clock cycle time pipelined

1 Clock cycle time unpipelined

"1 +Pipeline stall cycles per instruction Clock cycle time pipelined

« If all pipeline stages are balanced:
Clock cycle unpipelined
Pipeline depth
Clock cycle unpipelined
Clock cycle pipelined
9/10/09 19

Clock cycle pipelined =

Pipeline depth =

Example: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard Architecture”)

Machine B: Single ported memory and the clock rate is
1.05 times faster

Ideal CPI = 1 for both
* Loads are 40% of instructions executed

Average instruction time, = CPI x Clock cycle time = Clock cycle time
Clock cycle time

Average instruction time, = CPIx Clock cycletime = (1 + 04x1)x 105

=1.3 x Clock cycle time

* Machine A is 1.3 times faster

9/10/09 21

I 4+u3aN

S0 Q3Q

Data Hazard on R1

Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB

add rl,r2,r3
sub r4,rl,r3
and r6,rl,r7

or r8,rl,r9

xor rl0,rl,rll

9/10/09 22

Three Generic Data Hazards

* Read After Write (RAW)
Instr, tries to read operand before Instr, writes it

<::I: add rl,r2,r3
J: sub r4,rl,r3

* Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

9/10/09 24

J4uanN

sS0q30

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19

Time (clock cycles)

add rl,r2,r3

sub r4,rl,r3

and r6,rl,r7

or r8,rl,r9

xor rl0,rl,rll

9/10/09 23

Three Generic Data Hazards

* Write After Read (WAR)
Instr; writes operand before Instr, reads it

(::I: sub r4,rl,r3
J: add rl,r2,r3
K: mul r6,rl,r7

+ Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

+ Can’t happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Reads are always in stage 2, and

— Writes are always in stage 5
9/10/09 25

J4uanN

sS0q30

Three Generic Data Hazards

Write After Write (WAW)
Instr, writes operand before Instr, writes it.

I: sub rl,r4,r3
J: add rl,r2,r3
K: mul r6,rl,r7

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Writes are always in stage 5
Will see WAR and WAW in more complicated pipes

9/10/09 26

Forwarding to Avoid LW-SW Data Hazard

Figure A.8, Page A-20

Time (clock cycles)

add rl,r2,r3

lw r4, 0(rl)

sw r4,12(rl)

or r8,r6,r9

xor rl0,r9,rll

9/10/09 28

HW Change for Forwarding

Figure A.23, Page A-37

NextPC
g
4 X
o
2.
“a
o
@ 3 Data
=S Memory
"
3
Immediate g

What circuit detects and resolves this hazard?
9/10/09 27

Data Hazard Even with Forwarding
Figure A.9, Page A-21

Time (clock cycles)

lw rl, 0(r2)

sub r4,rl,r6

I 4+u3mN

and r6,rl,r7

or r8,rl,r9

S0 Q3Q

9/10/09 29

JI4+u3s N

S0aQ3Q

Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)

Iw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

How is this detected?

Outline

+ Branch Schemes
* Exceptions and Interrupts
* Conclusion

9/10/09

30

32

Software Scheduling to Avoid Load
Hazards
Try producing fast code for

a=b+c;
d=e-f;
assuming a, b, ¢, d ,e, and f in memory.
Slow code: Fast code:
LW Rb,b LW Rb,b
Stall LW Rc,c LW Rc,c
ADD Ra,Rb,Rc LW Re,e
SW a,Ra ADD Ra,Rb,Rc
LW Ree >< LW Rff
stall LW Rf,f SW a,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf
SW d,Rd SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.
9/10/09

Control Hazard on Branches
Three Stage Stall

10: beq rl1,r3,36 I

I
14: and r2,r3,r5
18: or «r6,rl,r7

22: add r8,r1,r9

——

36: xor rl0,rl,rll

What do you do with the 3 instructions in between?
How do you do it?

Where is the “commit”?
9/10/09

31

33

Branch Stall Impact

If CPI =1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

Two part solution:

— Determine branch taken or not sooner, AND
— Compute taken branch address earlier

MIPS branch tests if register =0 or = 0

MIPS Solution:
— Move Zero test to ID/RF stage

— Adder to calculate new PC in ID/RF stage
— 1 clock cycle penalty for branch versus 3

9/10/09

Four Branch Hazard Alternatives

#1:
#2:

#3:

9/10/09

Stall until branch direction is clear
Predict Branch Not Taken

— Execute successor instructions in sequence

— “Squash” instructions in pipeline if branch actually taken
— Advantage of late pipeline state update

— 47% MIPS branches not taken on average

— PC+4 already calculated, so use it to get next instruction

Predict Branch Taken
— 53% MIPS branches taken on average
— But haven’t calculated branch target address in MIPS
» MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

34

36

Pipelined MIPS Datapath

Figure A.24, page A-38

Instruction Instr. Decode
Fetch i Reg. Fetch

Next PC

Next

- Interplay of instruction set design ¢:1nd cycle time.

9/10/09

4

Execute

Addr. Calc

il

Memory Write

Access

KIowayy
p40Q

RD

Back

Four Branch Hazard Alternatives

#4:

9/10/09

Delayed Branch

— Define branch to take place AFTER a following instruction

branch instruction

sequential successorl\
sequential successor,

sequential successor;
branch target if taken

— 1 slot delay allows proper decision and branch target

address in 5 stage pipeline
— MIPS uses this

Branch delay of length n

37

WB Data

Scheduling Branch Delay Slots (Fig A.14)

A. From before branch

B. From branch target

C. From fall through

if $2=0 then

add $1,$2,83

sub $4,$5,$6

add $1,$2,83
if $1=0 then

add $1,%2,83
if $1=0 then

sub $4,$5,$6

becomes l

if $2=0 then
add $1,%$2,$3

becomes l

becomes l

add $1,$2,83
if $1=0 then
sub $4,$5,56

add $1,%$2,83
if $1=0 then

sub $4,$5,$6

Delayed Branch

+ Compiler effectiveness for single branch delay slot:
— Fills about 60% of branch delay slots

— About 80% of instructions executed in branch delay slots useful
in computation

— About 50% (60% x 80%) of slots usefully filled

* Delayed Branch downside: As processor go to
deeper pipelines and multiple issue, the branch
delay grows and need more than one delay slot

— Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

— Growth in available transistors has made dynamic approaches

» A is the best choice, fills delay slot & reduces instruction count (IC) relatively cheaper

* In B, the sub instruction may need to be copied, increasing IC

* In B and C, must be okay to execute sub when branch fails
9/10/09 38 9/10/09 39

