Midterm 2 Study Guide

Chapter 3 - Limits on Instruction-Level Parallelism

- Discuss key issues that limit the amount of ILP we can achieve?
- Define TLP
- Define multithreading
- Multithreading: Using ILP Support to Exploit TLP
 - What is the key idea in using ILP to exploit TLP? What is the concept of reuse?
 - Compare and contrast fine grained and coarse grained TLP
 - Discuss advantages and disadvantages to each
 - What is simultaneous multithreading?
 - How is it different or the same as multi-processing
 - How is it different than multithreading

Chapter 4

- Taxonomy of parallel architectures
 - o What are SISD, SIMD, MISD, and MIMD?
- Amdahls law and speedup equations
 - Give a percentage of a program that is parallelizable, calculate the speedup obtained using different numbers of CPUs
- Uniform memory access vs. non-uniform memory access
- Centralized shared memory model vs distributed memory model
 - Advantages and disadvantages
- What is cache coherency?
 - O Why does this problem exist?
- Private data vs. shared data
- Cache coherency schemes provide migration and replication of shared data items. What is migration and replication?
- What are the two cache coherency protocols that we discussed? How are they similar and how are they different? What are the advantages and disadvantages of each, if any?
- Discuss the basic idea of the snooping protocol and directory based protocols
 - How do the work
 - What information is stored for each cache and memory block?
 - Know what all the states are and how the transitions work between each state (all of the state diagrams in the lecture slides)
 - o In either protocol, how does a processor see the state of memory?
- What is false and true sharing and how are they similar and the same. Include discussion of block size
- What is an atomic operation and why is it necessary for sharing data?

Chapter 5

- 11 advanced cache optimizations what are they and how do they improve cache performance? Do they always improve performance or does it depend on the benchmark?
 - Small and simple caches to reduce hit time
 - Way prediction to reduce hit time
 - Trace caches to reduce hit time
 - Pipelined cache access to increase cache bandwidth
 - Nonblocking caches to increase cache bandwidth
 - Multibanked caches to increase cache bandwidth
 - Critical word first and early restart to reduce miss penalty
 - Merging write buffer to reduce miss penalty
 - Compiler optimizations to reduce miss rate
 - Code and data rearrangement
 - Loop interchange
 - Blocking
 - Hardware prefetching of instructions and data to reduce miss penalty or miss rate
 - Compiler controlled prefetching to reduce miss penalty or miss rate
 - The table on page 309 summarizes all of the optimization techniques and tells you which aspect it
 effects
 - Memory technology and optimizations
 - How are SRAMs and DRAMs layed out? How do they work? How are they different? What are the advantages and disadvantages to one over the other?
 - Describe how DRAMS are accessed i.e. address is passed in 2 pieces

- How can locality be used to improve the performance of DRAMS?
- What is DDR SDRAM?
- Protection: Virtual memory and virtual machines
 - How does virtual memory provide protect? What protections are provided?
 - What architectural support is needed for virtual memory?
 - Why have virtual machines become popular recently?
 - What types of protection does a virtual machine offer?
 - What is a virtual machine?
 - When running a virtual machine, describe how the system is laid out in terms of VM, VMM and Host os?
 - What is a s systems virtual machine?
 - What is the virtual machine monitor? What is it responsible for? What are its requirements?
 - How do virtual machines assist in managing both software and hardware?
 - What is virtualization?
 - How does lack of support in the ISS affect virtualization overhead?
 - Discuss how different running modes are important for the VM and VMM
 - Why can a VM not execute privileged instructions? What are privileged instructions and how are the handled when a VM tries to execute them
 - Why is I/O so difficult in VMs? How does a VM access physical devices on a machine?
 - Discuss the issues with virtual memory and virtual machines. What is the added overhead? How
 can that overhead be minimized?

Chapter 6

- Why has the topic of storage become so popular recently?
- · Areal density
- Concept of difference in whole disk read time for random access vs sequential access
- RAID
 - O What is the concept of RAID? Why is it important? Why is it useful?
 - Give any possible advantages/disadvantages to using RAID X. If I were to ask you this question, I
 would say what RAID X does to remind you
 - O How do different RAID methods perform for little and big writes?
 - Know the differences between the following RAID models. The table on page 363 might be helpful
 - RAID 1 mirrored
 - RAID 4 parity-based with one parity disk
 - RAID 5 parity-based with the parity spread across all disks
 - RAID 6 row and diagonal parity
 - How can RAID 6 recover from multiple disk failures? Work through a recovery problem like in the slides
- Errors, faults and failures
 - o Define error, fault and failure and how do those differ?
 - o Given an example situation, determine if it is an error, fault or failure
 - O What is a latent error?
 - o Four fault categories and what they are
 - Hardware faults
 - Design faults
 - Operation faults
 - Environmental faults
 - Three types of faults
 - Transient faults
 - Intermittent faults
 - Permanent faults
 - Why are operator faults so hard to quantify?
- I/O performance, reliability measures and benchmarks
 - Know the basic producer consumer model from page 372
 - Measures of I/O performance:
 - How many devices can you connect
 - Which I/O devices can you connect
 - Response time
 - Throughput
 - Interference of I/O with processor execution
 - o Difference between throughput and response time

- o Transaction time is made up of
 - Entry time
 - System response time
 - Think time
- o Transaction processing benchmarks
 - Mostly concerned with I/O rate over data rate
 - TPC benchmark characteristics on page 375
 - Why must the data set scale in size with the throughput?
 - Figure 6.14 Know the differences in these reconstruction policies.
- Queuing Theory
 - Give a basic definition of queuing theory. What is it useful for? What does it tell us? What types of systems does it measure? Etc
 - O What is a system that is in equilibrium?
 - o Little's law
 - o Terms on page 381
 - o What is the "mean time to complete service of a task when a new task arrives if the server is busy?"
 - Why is this term hard to measure? How is it measured in queuing theory?
 - What is a Poisson distribution?
 - How can a histogram give is a characterization of a set of data?
 - What does memoryless mean in the context of distributions?
 - o Know the assumptions of our model on page 386
 - What is an M/M/1 model?
 - What is an M/M/m model?
 - o Be able to solve problems like those in the examples on pages 382, 387,