
Midterm 1 Study Guide

Chapter 1 – Fundamentals of Computer Design
• Different goals for different classes of computers
• Discuss the power wall, ILP wall and memory wall and the implications of each
• Why has multicore technology become so important?
• In optimizations, why is it important to focus on the common case?
• Trends in technology

o Integrated circuit logic technology - Moore’s law
o Performance trends – Bandwidth over Latency
o Trends in power

 Clock gating
 Static power vs. dynamic power

• Dependability
o Mean time to failure (MTTF)

 Why is this misleading?
o Mean time between failures (MTBF)
o Module availability
o Problem similar to the example on page 26
o Problem similar to the example on page 27
o Why is a single point of failure bad?

• Measuring, reporting and summarizing performance
o Comparing two systems, showing speedup

 Equations on page 28
o Throughput
o How do you define time for comparisons?
o Benchmarks

 Why are benchmarks important?
 Why do benchmarks need multiple applications?
 Why is it important to run the entire benchmark suite and not a subset?
 Why is it necessary to create new benchmark suites?

• Quantitative principles of computer design
o Amdahl’s Law

 Define
 Use
 Why is Amdahl’s law fundamental to system design?
 Problems similar to those on pages 40-41

o Processor performance equation
 Calculate CPU time
 Calculate CPI
 What are the components of CPI?
 Problem similar to the one on page 43

Appendix A – Pipelining: Basic and Intermediate Concepts

• What is pipelining?
• What is parallelism?
• How does pipelining exploit parallelism?
• What are the advantages and disadvantages of a deeper pipeline?
• What is a RISC machine (and I don’t just want the acronym)

o In terms of types of instructions and structure of instructions
• Why is a RISC machine easy to pipeline and a CISC machine more difficult?
• What are the 5 pipeline stages? What happens in each stage?
• How can the register file be used in two pipeline stages?
• What is the purpose of pipeline registers? What information do they hold? Why are they essential to

pipelining?
• The major hurdle of pipelining – pipeline hazards

o What are the 3 pipeline hazards?
o Why must a pipeline stall?
o What is the difference between a data dependency and a data hazard?

 Give code that shows a both data dependencies and data hazards and identify both
o Show how pipeline stalls can effect the CPI

 Equations on page A-12
 Exercise on page A-13

o Identify potential structural hazards in the standard 5 stage MIPS pipeline. How are these hazards
avoided?

o What mechanisms exist for minimizing stalls due to data hazards?
 Show the flow of data as in figures A.7 and A.8
 Which data hazards always results in a stall? Give an example in assembly. How can this

stall be avoided.
o Branch/control hazards?

 What are they?
 Why are they such a problem in pipelining
 What mechanisms exist for reducing the effects of branch hazards? What are each of the

following and discuss advantages/disadvantages
• Stall then flush pipeline if necessary
• Predicted not taken
• predicted taken
• Delayed branch

o What is a branch delay slot? How is it filled (3 possibilities)?

Appendix C

• The 36 terms on page C-2
• What are the 3 C’s in cache misses? What causes them and how can they be reduced/avoided?
• The 4 memory hierarchy questions on page C-6
• Calculate average memory access time as in the example on page C-15 and C-16, C-26, C-31, 295,
• 6 Basic cache optimizations – what are they and how do they improve cache performance? Do they always

improve performance or does it depend on the benchmark?
• larger block size to reduce miss rate
• Larger caches to reduce miss rate
• Higher associativity to reduce miss rate
• Multilevel caches to reduce miss rate
• Giving priority to read misses over writes to reduce miss penalty
• Avoiding address translation during indexing of the cache to reduce hit time

• The difference and impacts of write-back versus write-through caches.
• Virtual memory

• What is it?
• What is its purpose?
• How does it help a program? How does it hurt a program?
• What does it mean to have a cache that is virtually indexed virtually tagged or virtually indexed

physically tagged? What are the advantages and/or disadvantages of either way
• What are page tables and what do they mean for virtual memory?
• How can you speed up address translation?

Chapter 2 – Instruction-Level Parallelism and Its Exploitation

• What is ILP?
o How does pipelining exploit ILP? Why is the pipeline essential to exploit ILP?

• Why is speculation imperative to exploiting more ILP?
• What is a data dependency?
• What is a name dependency?

o Why are there name dependencies and how can we overcome them?
• What is a control dependency?
• Data hazards

o What are the three types of hazards?
o Give an example of each with assembly code

• Basic compiler techniques for exposing ILP?
o Pipeline scheduling and loop unrolling
o Example on page 76
o Example on page 77
o Example on page 78
o Slides 17-22, you might have to do something similar
o Why is loop unrolling hard? What things must be considered? What fundamental requirements in

loop structure are necessary to fully exploit loop unrolling?

 Register pressure
• Reducing branch costs with prediction

o What is branch prediction? How does it affect CPI?
o Compare and contrast static and dynamic branch prediction
o What are branch prediction buffers?

 Branch history table
• Why can a simple branch history table using 1 bit be worse than just always

predicting that a branch is taken?
 Correlating branch predictors?
 Tournament predictors?
 Why is local and global information important?
 How are branches addressed in the predictors? What is the aliasing problem? What

problems can this lead to? How can this be overcome? Is it worth it?
• Dynamic scheduling

o What is dynamic scheduling?
o What is the purpose of it?

 What does it try to avoid?
 What must it maintain?
 Who is it better than static scheduling (compile time)

o What is the limitation of a simple pipelining and how does dynamic scheduling attempt to
overcome this?

o What is the difference between in-order execution and out-of-order execution?
 How does out-or-order execution introduce WAR and WAW hazards? Give examples in

assembly code
 What mechanism exists for dealing with these hazards?

o What is out-of-order completion?
 What are the implications of it? (don’t forget exception handling)
 What are imprecise exceptions?

o Tomasulo’s algorithm
 Why was it developed?
 What are the goals?
 What are the two major advantages? What are the drawbacks?
 Draw a block diagram
 When is the register file accessed during execution? When is it not accessed?
 What is the purpose of the following components in Tomasulo’s algorithm?

• Reservation stations
o What are the fields within the reservation station and how are they

used
• Common data bus

 Discuss the workings of Tomasulo’s algorithm
 How does Tomasulo’s algorithm effective unroll loops dynamically?
 Show the state of the system after a few instructions have executed

• Similar to the example given in the slides
• Review examples in section 2.5

 How do reservation stations affect RAW, WAR, and WAW hazards?
 How do the reservation stations assist in register renaming?
 What does the reorder buffer add to Tomasulo’s algorithm?

o Hardware based speculation
 Three key ideas:

• Dynamic branch prediction
• Control flow speculation
• Dynamic scheduling

 What is in-order commit?
• How is this important for speculation
• How does the reorder buffer assist in in-order commit?

 What is the reorder buffer?
• Why is it important?
• When using a reorder buffer, when are the results reflected in the register file?

 Show hardware structure of system with reorder buffer
 Trace an example using a reorder buffer

• Similar to the example in the slides
o Reducing the CPI to less than one

 What key mechanisms are required to reduce the CPI to less than one?
 What is a VLIW processor?

• What are the advantages and disadvantages to VLIW
o Branch target buffers

