Midterm 1 Study Guide

Chapter 1 — Fundamentals of Computer Design
* Different goals for different classes of computers
* Discuss the power wall, ILP wall and memory wall and the implications of each
* Why has multicore technology become so important?
* In optimizations, why is it important to focus on the common case?
* Trends in technology
o Integrated circuit logic technology - Moore’s law
o Performance trends — Bandwidth over Latency
o Trends in power
= Clock gating
= Static power vs. dynamic power
* Dependability
o Mean time to failure (MTTF)
= Why is this misleading?
Mean time between failures (MTBF)
Module availability
Problem similar to the example on page 26
Problem similar to the example on page 27
o Why is a single point of failure bad?
* Measuring, reporting and summarizing performance
o Comparing two systems, showing speedup
= Equations on page 28
o Throughput
How do you define time for comparisons?
o Benchmarks
= Why are benchmarks important?
= Why do benchmarks need multiple applications?
= Why is it important to run the entire benchmark suite and not a subset?
= Why is it necessary to create new benchmark suites?
* Quantitative principles of computer design
o Amdahl’s Law
= Define
= Use
= Why is Amdahl’s law fundamental to system design?
= Problems similar to those on pages 40-41
o Processor performance equation
= Calculate CPU time
= Calculate CPI
= What are the components of CPI?
= Problem similar to the one on page 43

O O O O

[¢]

Appendix A — Pipelining: Basic and Intermediate Concepts
* What is pipelining?
* What is parallelism?
* How does pipelining exploit parallelism?
* What are the advantages and disadvantages of a deeper pipeline?
* Whatis a RISC machine (and I don’t just want the acronym)
o Interms of types of instructions and structure of instructions
* Why is a RISC machine easy to pipeline and a CISC machine more difficult?
* What are the 5 pipeline stages? What happens in each stage?
* How can the register file be used in two pipeline stages?
* What is the purpose of pipeline registers? What information do they hold? Why are they essential to
pipelining?
* The major hurdle of pipelining — pipeline hazards
o What are the 3 pipeline hazards?
o Why must a pipeline stall?
o What is the difference between a data dependency and a data hazard?
= Give code that shows a both data dependencies and data hazards and identify both
o Show how pipeline stalls can effect the CPI

Appendix C
The 36 terms on page C-2

What are the 3 C’s in cache misses? What causes them and how can they be reduced/avoided?

The 4 memory hierarchy questions on page C-6

Calculate average memory access time as in the example on page C-15 and C-16, C-26, C-31, 295,

6 Basic cache optimizations — what are they and how do they improve cache performance? Do they always
improve performance or does it depend on the benchmark?

= Equations on page A-12
= Exercise on page A-13
Identify potential structural hazards in the standard 5 stage MIPS pipeline. How are these hazards
avoided?
What mechanisms exist for minimizing stalls due to data hazards?
= Show the flow of data as in figures A.7 and A.8
= Which data hazards always results in a stall? Give an example in assembly. How can this
stall be avoided.
Branch/control hazards?
= What are they?
= Why are they such a problem in pipelining
= What mechanisms exist for reducing the effects of branch hazards? What are each of the
following and discuss advantages/disadvantages
¢ Stall then flush pipeline if necessary
* Predicted not taken
¢ predicted taken
* Delayed branch
o What is a branch delay slot? How is it filled (3 possibilities)?

larger block size to reduce miss rate

Larger caches to reduce miss rate

Higher associativity to reduce miss rate

Multilevel caches to reduce miss rate

Giving priority to read misses over writes to reduce miss penalty

Avoiding address translation during indexing of the cache to reduce hit time

The difference and impacts of write-back versus write-through caches.
Virtual memory

What is it?

What is its purpose?

How does it help a program? How does it hurt a program?

What does it mean to have a cache that is virtually indexed virtually tagged or virtually indexed
physically tagged? What are the advantages and/or disadvantages of either way

What are page tables and what do they mean for virtual memory?

How can you speed up address translation?

Chapter 2 — Instruction-Level Parallelism and Its Exploitation
What is ILP?

o

How does pipelining exploit ILP? Why is the pipeline essential to exploit ILP?

Why is speculation imperative to exploiting more ILP?
What is a data dependency?
What is a name dependency?

o

Why are there name dependencies and how can we overcome them?

What is a control dependency?
Data hazards

o
o

What are the three types of hazards?
Give an example of each with assembly code

Basic compiler techniques for exposing ILP?

O O O O O O

Pipeline scheduling and loop unrolling

Example on page 76

Example on page 77

Example on page 78

Slides 17-22, you might have to do something similar

Why is loop unrolling hard? What things must be considered? What fundamental requirements in
loop structure are necessary to fully exploit loop unrolling?

= Register pressure
Reducing branch costs with prediction
o What is branch prediction? How does it affect CP1?
o Compare and contrast static and dynamic branch prediction
o What are branch prediction buffers?
= Branch history table
* Why can a simple branch history table using 1 bit be worse than just always
predicting that a branch is taken?
= Correlating branch predictors?
= Tournament predictors?
= Why is local and global information important?
= How are branches addressed in the predictors? What is the aliasing problem? What
problems can this lead to? How can this be overcome? Is it worth it?
Dynamic scheduling
o What is dynamic scheduling?
o What is the purpose of it?
= What does it try to avoid?
= What must it maintain?
= Who is it better than static scheduling (compile time)
o What is the limitation of a simple pipelining and how does dynamic scheduling attempt to
overcome this?
o What is the difference between in-order execution and out-of-order execution?
= How does out-or-order execution introduce WAR and WAW hazards? Give examples in
assembly code
= What mechanism exists for dealing with these hazards?
o What is out-of-order completion?
= What are the implications of it? (don’t forget exception handling)
= What are imprecise exceptions?
o Tomasulo’s algorithm
= Why was it developed?
= What are the goals?
= What are the two major advantages? What are the drawbacks?
= Draw a block diagram
= When is the register file accessed during execution? When is it not accessed?
= What is the purpose of the following components in Tomasulo’s algorithm?
* Reservation stations
o What are the fields within the reservation station and how are they
used
¢ Common data bus
= Discuss the workings of Tomasulo’s algorithm
= How does Tomasulo’s algorithm effective unroll loops dynamically?
Ll Show the state of the system after a few instructions have executed
¢ Similar to the example given in the slides
* Review examples in section 2.5
= How do reservation stations affect RAW, WAR, and WAW hazards?
= How do the reservation stations assist in register renaming?
= What does the reorder buffer add to Tomasulo’s algorithm?
o Hardware based speculation
= Three key ideas:
* Dynamic branch prediction
¢ Control flow speculation
* Dynamic scheduling
= What is in-order commit?
¢ How is this important for speculation
¢ How does the reorder buffer assist in in-order commit?
= What is the reorder buffer?
¢ Why is it important?
* When using a reorder buffer, when are the results reflected in the register file?
= Show hardware structure of system with reorder buffer
= Trace an example using a reorder buffer
* Similar to the example in the slides
o Reducing the CPI to less than one

= What key mechanisms are required to reduce the CPI to less than one?
= Whatis a VLIW processor?
* What are the advantages and disadvantages to VLIW
o Branch target buffers

