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Outline 
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Recall from Pipelining Review 

•  Pipeline CPI = Ideal pipeline CPI + Structural
 Stalls + Data Hazard Stalls + Control Stalls 

–  Ideal pipeline CPI: measure of the maximum
 performance attainable by the implementation 

–  Structural hazards: HW cannot support this
 combination of instructions 

– Data hazards: Instruction depends on result of prior
 instruction still in the pipeline 

– Control hazards: Caused by delay between the fetching
 of instructions and decisions about changes in control
 flow (branches and jumps) 
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Instruction Level Parallelism 
•  Instruction-Level Parallelism (ILP): overlap the

 execution of instructions to improve
 performance 

•  2 approaches to exploit ILP: 
1)  Dynamically - Rely on hardware to help discover and exploit

 the parallelism dynamically (e.g., Pentium 4, AMD Opteron,
 IBM Power) , and 

2)  Statically - Rely on software technology to find parallelism,
 statically at compile-time (e.g., Itanium 2) 
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Instruction-Level Parallelism (ILP) 
•  Basic Block (BB) ILP is quite small 

– BB: a straight-line code sequence with no branches in
 except to the entry and no branches out except at the exit 

–  average dynamic branch frequency 15% to 25%  
=> 4 to 7 instructions execute between a pair of branches 

–  Plus instructions in BB likely to depend on each other 
•  To obtain substantial performance

 enhancements, we must exploit ILP across
 multiple basic blocks 

•  Simplest: loop-level parallelism to exploit
 parallelism among iterations of a loop. E.g., 

  for (i=1; i<=1000; i=i+1) 
         x[i] = x[i] + y[i]; 
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Loop-Level Parallelism 
•  Exploit loop-level parallelism to parallelism by “unrolling

 loop” either by  
1.  dynamic via branch prediction or  
2.  static via loop unrolling by compiler 
•  Determining instruction dependence is critical to Loop Level

 Parallelism 
•  If 2 instructions are 

–  parallel, they can execute simultaneously in a pipeline of
 arbitrary depth without causing any stalls (assuming no
 structural hazards) 

–  dependent, they are not parallel and must be executed in
 order, although they may often be partially overlapped 
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•  InstrJ is data dependent (aka true dependence) on
 InstrI:  
1.  InstrJ tries to read operand before InstrI writes it 

   

2.  or InstrJ is data dependent on InstrK which is dependent on InstrI 

•  If two instructions are data dependent, they cannot
 execute simultaneously or be completely overlapped  

•  Data dependence in instruction sequence  
! data dependence in source code ! effect of
 original data dependence must be preserved 

•  If data dependence caused a hazard in pipeline,  
called a Read After Write (RAW) hazard  

•  Dependencies are independent of the pipeline,
 hazards are dependent on the pipeline 

Data Dependence and Hazards 

I: add r1,r2,r3 
J: sub r4,r1,r3 

I: add r1, r2, r3 
K: add r3, r2, r1 
J: sub, r4, r5, r3 
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ILP and Data Dependencies,Hazards 
•  HW/SW must preserve program order: 

–  Must have same outcome as if executed sequentially as determined
 by the original source code 

–  Dependences are a property of programs 

•  Presence of dependence indicates potential for a
 hazard, but actual hazard and length of any stall is
 property of the pipeline 

•  Importance of the data dependencies 
1) indicates the possibility of a hazard 
2) determines order in which results must be calculated 
3) sets an upper bound on how much parallelism can possibly be

 exploited 

•  HW/SW goal: exploit parallelism by preserving program
 order only where it affects the outcome of the program 

–  As long as the results are the same, execute in any order 
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•  Name dependence: when 2 instructions use same
 register or memory location, called a name, but no
 flow of data between the instructions associated
 with that name; 2 versions of name dependence 

•  Bad if InstrJ writes operand before InstrI reads it 

Called an “anti-dependence” by compiler writers. 
This results from reuse of the name “r1” 

•  If anti-dependence caused a hazard in the pipeline,
 called a Write After Read (WAR) hazard 

I: sub r4,r1,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 

Name Dependence #1: Anti-dependence 
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Name Dependence #2: Output dependence 
•  Bad if InstrJ writes operand before InstrI writes it. 

•  Called an “output dependence” by compiler writers 
This also results from the reuse of name “r1” 

•  If anti-dependence caused a hazard in the pipeline,
 called a Write After Write (WAW) hazard 

•  Instructions involved in a name dependence can
 execute simultaneously if name used in instructions is
 changed so instructions do not conflict 

–  Register renaming resolves name dependence for regs 
–  Either by compiler or by HW 

I: sub r1,r4,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 
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Control Dependencies 

•  Every instruction is control dependent on
 some set of branches, and, in general, these
 control dependencies must be preserved to
 preserve program order 
if p1 { 
 S1; 
}; 
if p2 { 
 S2; 
} 

•  S1 is control dependent on p1, and S2 is
 control dependent on p2 but not on p1. 
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Control Dependence Ignored 

•  Control dependence need not be
 preserved, but results must be correct 
–  willing to execute instructions that should not have been

 executed, thereby violating the control dependences, if
 can do so without affecting correctness of the program  

•  Instead, 2 properties critical to program
 correctness are  
1) exception behavior and  
2) data flow 



9/27/10 13 

Exception Behavior 
•  Preserving exception behavior  
! any changes in instruction execution order
 must not change how exceptions are raised in
 program  
(! no new exceptions) 

•  Example: 
 DADDU   R2,R3,R4 
 BEQZ   R2,L1 
 LW   R1,0(R2) 

L1: 
–  (Assume branches not delayed) 

•  Problem with moving LW before BEQZ? 
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Data Flow 

•  Data flow: actual flow of data values among
 instructions that produce results and those that
 consume them 

–  branches make flow dynamic, determine which instruction is
 supplier of data 

•  Example: 
 DADDU  R1,R2,R3 
BEQZ  R4,L 
DSUBU  R1,R5,R6 
L:  … 
OR   R7,R1,R8 

•  OR depends on DADDU or DSUBU?  
Must preserve data flow on execution 
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Computers in the News 
Who said this?   A. Jimmy

 Carter, 1979 
B. Bill Clinton, 1996 

C. Al Gore, 2000 
D. George W. Bush, 2006 

 "Again, I'd repeat to you that if we can remain
 the most competitive nation in the world, it will
 benefit the worker here in America. People
 have got to understand, when we talk about
 spending your taxpayers' money on research
 and development, there is a correlating benefit,
 particularly to your children.  See, it takes a
 while for  some of the investments that are
 being made with government dollars  to come
 to market.  I don't know if people realize this,
 but the  Internet began as the Defense
 Department project to improve military 
 communications. In other words, we were
 trying to figure out how to  better
 communicate, here was research money spent,
 and as a result of  this sound investment, the
 Internet came to be.  

The Internet has changed us.  It's changed the
 whole world."  
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Software Techniques - Loop Unrolling Example 
•  This code, add a scalar to a vector: 
 for (i=1000; i>0; i=i–1) 
  x[i] = x[i] + s; 

•  Assume following latencies for all examples 
–  Ignore delayed branch in these examples 

Instruction 
producing result 

Instruction using 
result 

Latency in 
Cycles 

Stalls between 
in cycles 

FP ALU op Another FP ALU op 4 3 
FP ALU op Store double 3 2 
Load double FP ALU op 1 1 
Load double Store double 1 0 
Integer op Integer op 1 0 
ALU op Branch 1 1 
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FP Loop: Where are the Hazards? 

Loop:  L.D    F0,0(R1)  ;F0=vector element 
       ADD.D  F4,F0,F2  ;add scalar from F2 
       S.D    0(R1),F4  ;store result 
       DADDUI R1,R1,-8  ;decrement pointer 8B (DW) 
       BNEZ   R1,Loop   ;branch R1!=zero 
    

•   First translate into MIPS code:  
-To simplify, assume 8 is lowest address 
R1 is loop counter initialized to 8000 

Double precision so decrement
 by 8 (instead of 4) 
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FP Loop - Where are the stalls? 
Assumption:

 no cache
 misses 
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Revised FP Loop Minimizing Stalls 

 7 clock cycles, but just 3 for execution (L.D, ADD.D,S.D), 4 for loop
 overhead; How make  faster? 

Instruction  Instruction  Latency in 
producing result  using result  clock cycles 
FP ALU op  Another FP ALU op  3 
FP ALU op  Store double  2  
Load double  FP ALU op  1 

 1 Loop:  L.D  F0,0(R1)   
 2   DADDUI  R1,R1,-8   
 3   ADD.D  F4,F0,F2   
 4   stall 
 5   stall 

 6   S.D  8(R1),F4  ;altered offset when move
 DSUBUI 

 7  BNEZ  R1,Loop Swap DADDUI and S.D by changing address of S.D 

Move up add to hide stall.. 

And remove stall 

But this is hard for the compiler to do!! 
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Unroll Loop Four Times (straightforward
 way) - Loop Speedup 

 Rewrite loop to
 minimize
 stalls? 

1 Loop:  L.D  F0,0(R1) 
3  ADD.D  F4,F0,F2 
6  S.D  0(R1),F4  ;drop DSUBUI & BNEZ 
7  L.D  F6,-8(R1) 
9  ADD.D  F8,F6,F2 
12  S.D  -8(R1),F8  ;drop DSUBUI & BNEZ 
13  L.D  F10,-16(R1) 
15  ADD.D  F12,F10,F2 
18  S.D  -16(R1),F12  ;drop DSUBUI & BNEZ 
19  L.D  F14,-24(R1) 
21  ADD.D  F16,F14,F2 
24  S.D  -24(R1),F16 
25  DADDUI  R1,R1,#-32  ;alter to 4*8 
26  BNEZ  R1,LOOP 

  27 clock cycles, or 6.75 per iteration (compared to 7) 
   (Assumes R1 is multiple of 4) 

1 cycle stall 
2 cycles stall 

But we have made the basic block bigger…more ILP 

27 clock cycles or 6.75 per element (dropped instructions, not
 stalls) (Assumes R1 is a multiple of 4)  

27 
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Unrolled Loop That Minimizes Stalls 

1 Loop:  L.D  F0,0(R1) 
2  L.D  F6,-8(R1) 
3  L.D  F10,-16(R1) 
4  L.D  F14,-24(R1) 
5  ADD.D  F4,F0,F2 
6  ADD.D  F8,F6,F2 
7  ADD.D  F12,F10,F2 
8  ADD.D  F16,F14,F2 
9  S.D  0(R1),F4 
10  S.D  -8(R1),F8 
11  S.D  -16(R1),F12 
12  DSUBUI  R1,R1,#32 
13  S.D  8(R1),F16 ; 8-32 = -24 
14  BNEZ  R1,LOOP 

 14 clock cycles, or 3.5 per iteration due to
 unrolling and rescheduling 

Group
 instructions to
 remove stalls 
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Unrolled Loop Detail 
•  Assumption: Upper bound is known - not realistic 
•  Suppose it is n, and we would like to unroll the

 loop to make k copies of the body 
•  Solution - 2 consecutive loops: 

–  1st executes (n mod k) times and has a body that is the
 original loop 

–  2nd is the unrolled body surrounded by an outer loop that
 iterates (n/k) times 

•  For large values of n, most of the execution time
 will be spent in the unrolled loop 
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5 Loop Unrolling Decisions 
•  Hard for compiler - easy for humans. Compilers must be

 sophiticated: 
1.  Is loop unrolling useful? Are iterations independent 
2.  Are there enough registers? Need to avoid added data

 hazards by using the same registers for different
 computations  

3.  Eliminate the extra test and branch instructions and adjust
 the loop termination and iteration code 

4.  Determine that loads and stores from different iterations
 are independent  
•  Memory analysis to determine that they do not refer to same address

 pointers make things more difficult.  

5.  Schedule the code, preserving any dependences needed to
 yield the same result as the original code 
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3 Limits to Loop Unrolling - How Much
 Benefit Do We Get??? 
1.  Diminishing returns as unrolling gets larger 

•  How much more benefit going from 4 to 8? 
•  Not much - Amdahl’s Law 

2.  Growth in code size  
•  Increase I-cache miss rate with larger loops 

3.  Register pressure: not enough registers for
 aggressive unrolling and scheduling 
•  May need to store live values in memory 

•  But…..Loop unrolling reduces impact of
 branches on pipeline; another way is branch
 prediction 
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Outline 
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Static Branch Prediction 
•  Earlier lecture showed scheduling code around delayed

 branch - Where do we get instructions? 
•  To reorder code around branches, need to predict

 branch statically when compile  
•  Simplest scheme is to predict a branch as taken 

–  Average misprediction = untaken branch frequency = 34% SPEC 

•  More accurate
 schemes use
 profile
 information 
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Dynamic Branch Prediction 
•  Better approach 

–  Hard to get accurate profile for static prediction  

•  Why does prediction work? 
–  Regularities 

»  Underlying algorithm 
»  Data that is being operated 

–  Instruction sequence has redundancies that are artifacts of
 way that humans/compilers think about problems 

•  Is dynamic branch prediction better than static
 branch prediction? 

–  Seems to be  
–  There are a small number of important branches in programs

 which have dynamic behavior 
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Dynamic Branch Prediction 

•  Performance is based on a function of
 accuracy and cost of misprediction 

•  Simple scheme - Branch History Table 
–  Lower bits of PC address index table of 1-bit values 
–  Says whether or not branch taken last time 
– No address check, just hint 
–  Problem: in a loop, 1-bit BHT will cause two mispredictions

 (avg is 9 iterations before exit): 
»  End of loop case, when it exits instead of  looping as

 before 
»  First time through loop on next time through code,

 when it predicts exit instead of looping 
» Worse than always predicting taken 
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•  How do we make dynamic branch prediction better? 
–  Solution: 2-bit scheme where change prediction only if get misprediction

 twice 

•  Red: stop, not taken 
•  Green: go, taken 
•  Adds history to decision making process 
•  Simple but quite effective 

Dynamic Branch Prediction 

T 

T NT 

NT 

Predict Taken 

Predict Not  
Taken 

Predict Taken 

Predict Not  
Taken T 

NT 
T 

NT 
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BHT Accuracy 

•  Mispredict because either: 
–  Wrong guess for that branch 
–  Address conflicts - got branch history of wrong branch when

 index the table 
•  4096 entry table: 
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Correlated Branch Prediction 
•  Idea:  correlate prediction based on recent

 branch history of previous branches 
–  record m most recently executed branches as taken or not

 taken, and use that pattern to select the proper n-bit branch
 history table 

•  In general, (m,n) predictor means record last m
 branches to select between 2m history tables,
 each with n-bit counters 

–  Thus, old 2-bit BHT is a (0,2) predictor 

•  Global Branch History:  m-bit shift register
 keeping T/NT status of last m branches. 

•  Each entry in table (branch address) has m n-bit
 predictors. 
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Correlating Branches 

(2,2) predictor!
– !Behavior of recent

 branches selects
 between four
 predictions of next
 branch, updating just
 that prediction!

Branch address!

 2-bits per branch predictor!

Prediction!

2-bit global branch history!

4!

m = 3 decoded 8 possible global branch histories 
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Tournament Predictors 
•  Success of correlating branch prediction lead to

 tournament predictors 
–  Multilevel branch predictor 

–  Use n-bit saturating counter to choose between competing
 predictors - may the best predictor win 

•  Usual choice between global and local predictors 
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Pentium 4 Misprediction Rate  
(per 1000 instructions, not per branch) 

SPECint2000 SPECfp2000 

"6% misprediction rate per branch SPECint  
(19% of INT instructions are branch) 

"2% misprediction rate per branch SPECfp 
(5% of FP instructions are branch) 



•  Branch target calculation is costly and stalls the
 instruction fetch. 

•  BTB stores PCs the same way as caches 
•  The PC of a branch is sent to the BTB 
•  When a match is found the corresponding

 Predicted PC is returned 
•  If the branch was predicted taken, instruction

 fetch continues at the returned predicted PC 

Branch Target Buffers (BTB) Branch Target Buffers 
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Dynamic Branch Prediction Summary 
•  Prediction becoming important part of execution 
•  Branch History Table: 2 bits for loop accuracy 
•  Correlation: Recently executed branches correlated

 with next branch 
–  Either different branches (GA) 
–  Or different executions of same branches (PA) 

•  Tournament predictors take insight to next level, by
 using multiple predictors  

–  usually one based on global information and one based on local
 information, and combining them with a selector 

–  In 2006, tournament predictors using " 30K bits are in processors
 like the Power5 and Pentium 4 

9/27/10 40 

Outline 
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Advantages of Dynamic Scheduling 
•  Dynamic scheduling - hardware rearranges the

 instruction execution to reduce stalls while
 maintaining data flow and exception behavior 

•  It handles cases when dependences unknown at
 compile time  

–  Hide cache misses by executing other code while waiting for
 the miss to resolve 

•  No recompiling - It allows code that compiled for
 one pipeline to run efficiently on a different
 pipeline  

•  It simplifies the compiler  
•  Hardware speculation, a technique with

 significant performance advantages, builds on
 dynamic scheduling  
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HW Schemes: Instruction Parallelism 
•  Key idea: Allow instructions behind stall to proceed 

 DIVD  F0,F2,F4 
 ADDD  F10,F0,F8 
 SUBD  F12,F8,F14 

•  Enables out-of-order execution and allows out-of
-order completion (e.g., SUBD) 

–  Issue stage in order (in-order issue) 
•  Three instruction phases 

–  begins execution 
–  completes execution 
–  in execution - between above 2 stages 

•  Note: Dynamic execution creates WAR and WAW
 hazards and makes exceptions harder 

Division is slow, addd must wait but
 subd doesn’t have to 
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Dynamic Scheduling Step 1 

•  Instruction Decode (ID), also called
 Instruction Issue 

•  Split the ID pipe stage of simple 5-stage
 pipeline into 2 stages:  

–  Issue—Decode instructions, check for structural hazards  

–  Read operands—Wait until no data hazards, then read
 operands  
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A Dynamic Algorithm: Tomasulo’s 

•  For IBM 360/91 (before caches!) 
–  ! Long memory latency 

•  Goal: High Performance without special compilers 
–  Same code for many different models 

•  BIG LIMITATION - 4 floating point registers limited
 compiler ILP 

–  Need more effective registers — renaming in hardware!  

•  Original algorithm focused on FP, but applicable to
 integer instructions 

–  FP were slow, so wanted int instructions to go ahead 

•  Why Study 1966 Computer?  
•  The descendants of this have flourished! 

–  Alpha 21264, Pentium 4, AMD Opteron, Power 5, … 
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Tomasulo Algorithm 
•  Control & buffers distributed with Function Units (FU) 

–  Instead of centralized register file, shift data to a buffer at each
 FU 

–  FU buffers called “reservation stations”; hold operands for
 pending operations and the instruction  

•  Registers in instructions (held in the buffers) replaced by
 actual values or a pointer to reservation stations (RS)
 that will eventually hold the value - called  register
 renaming   

– Register file only accessed once, then wait on RS values 
– Renaming avoids WAR, WAW hazards 
– More reservation stations than registers, so can do optimizations

 compilers can’t 
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Tomasulo Algorithm 

•  Results go directly to FU through RS, not through
 register file, over Common Data Bus (CDB) that
 broadcasts results to all FU RSs 

–  Avoids RAW hazards by executing an instruction only when its
 operands are available 

–  Register file not a bottleneck 
•  Load and Stores treated as FUs with RSs as well 
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Tomasulo Organization 

FP adders 

Add1 
Add2 
Add3 

FP multipliers 

Mult1 
Mult2 

From Mem FP Registers 

Reservation  
Stations 

Common Data Bus (CDB) 

To Mem 

FP Op 
Queue 

Load Buffers 

Store  
Buffers 

Load1 
Load2 
Load3 
Load4 
Load5 
Load6 
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Reservation Station Components 

 Op:  Operation to perform in the unit (e.g., + or –) 
 Vj, Vk: Value of Source operands 

–  Store buffers has V field, result to be stored 

 Qj, Qk: Reservation stations producing source
 registers (value to be written) 

– Note: Qj,Qk=0 => ready 
–  Store buffers only have Qi for RS producing result 

  Busy: Indicates reservation station or FU is busy 
   
 Register result status—Indicates which functional unit
 will write each register, if one exists. Blank when no
 pending instructions that will write that register.  



9/27/10 49 

Three Stages of Tomasulo Algorithm 

1."Issue—get instruction from FP Op Queue 
  If reservation station free (no structural hazard),  

control issues instr & sends operands (renames registers). 

2."Execute—operate on operands (EX) 
  When both operands ready then execute; 

 if not ready, watch Common Data Bus for result 

3."Write result—finish execution (WB) 
  Write on Common Data Bus to all awaiting units;  

mark reservation station available 
Difference between: 
–  Normal data bus: data + destination (“go to” bus) 
–  Common data bus: data + source  (“come from” bus) 

»  Write if matches expected Functional Unit (produces result) 
»  Does the broadcast 

•  Example speed:  
2 clocks for Fl .pt. +,-; 2 for load/store; 10 for * ; 40 clks for / 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 

Add2 

Add3 

Mult1 

Mult2 
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Tomasulo Example 

Clock cycle  
counter 

Instruction stream 

3 Load/Buffers 

3 FP Adder R.S. 
2 FP Mult R.S. 

Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 

LD F2 45+ R3 

MULTD F0 F2 F4 

SUBD F8 F6 F2 

DIVD F10 F0 F6 

ADDD F6 F8 F2 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

FU count 
down 

Reservation Stations: 

Register Result Status: 

Clock 

0 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

Mult1 No 

Mult2 No 
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Tomasulo Example – Cycle 1 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 

LD F2 45+ R3 

MULTD F0 F2 F4 

SUBD F8 F6 F2 

DIVD F10 F0 F6 

ADDD F6 F8 F2 

Instruction Status: Busy Address Status 

Load1 Yes 40 Issue 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

1 

Assuming R2 = 6 

F0 F2 F4 F6 F8 F10 F12 … F30 

FU 2 Load 1 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

Mult1 No 

Mult2 No 
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Tomasulo Example – Cycle 2 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 

LD F2 45+ R3 2 

MULTD F0 F2 F4 

SUBD F8 F6 F2 

DIVD F10 F0 F6 

ADDD F6 F8 F2 

Instruction Status: Busy Address Status 

Load1 Yes 40 Exe 1 

Load2 Yes 46 Issue 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

2 

Assuming R3 = 1 

F0 F2 F4 F6 F8 F10 F12 … F30 

FU Load 2 2 Load 1 

Note: Can have multiple loads outstanding 



S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

Mult1 Yes MULTD 2 Load2 Issue 

Mult2 No 
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Tomasulo Example – Cycle 3 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 

LD F2 45+ R3 2 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 

DIVD F10 F0 F6 

ADDD F6 F8 F2 

Instruction Status: Busy Address Status 

Load1 Yes 40 Exe 2 

Load2 Yes 46 Exe 1 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

3 

Assuming R3 = 1 

F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 Load 2 2 Load 1 

Load1 completing; what is waiting for Load1?  

 Note: registers names are
 removed (“renamed”) in
 Reservation Stations; MULT
 issued 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 Yes SUBD 10 Load2 Issue 

Add2 No 

Add3 No 

Mult1 Yes MULTD 2 Load2 Waiting 

Mult2 No 
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Tomasulo Example – Cycle 4 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 

DIVD F10 F0 F6 

ADDD F6 F8 F2 

Instruction Status: Busy Address Status 

Load1 Yes 40 Commit 

Load2 Yes 46 Exe 2 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

4 

Assuming M[40] = 10 

F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 Load 2 2 10 Add1 

•  Load2 completing; what is waiting for Load2?  

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

2 Add1 Yes SUBD 10 3 Ready 

Add2 No 

Add3 No 

10 Mult1 Yes MULTD 3 2 Ready 

Mult2 Yes DIVD 10 Mult1 Issue 
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Tomasulo Example – Cycle 5 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 

Instruction Status: Busy Address Status 

Load1 No 

Load2 Yes 46 Commit 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

5 

Assuming M[46] = 3 

F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 10 Add1 Mult2 

•  Timer starts down for Add1, Mult1 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

1 Add1 Yes SUBD 10 3 Exe1 

Add2 Yes ADDD 3 Add1 Issue 

Add3 No 

9 Mult1 Yes MULTD 3 2 Exe1 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 6 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

6 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 Add2 Add1 Mult2 

•  Issue ADDD here despite name dependency on F6?  



S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

0 Add1 Yes SUBD 10 3 Exe2 

Add2 Yes ADDD 3 Add1 Waiting 

Add3 No 

8 Mult1 Yes MULTD 3 2 Exe2 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 7 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

7 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 Add2 Add1 Mult2 

•  Add1 (SUBD) completing; what is waiting for it?  

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 Yes SUBD 10 3 Commit 

2 Add2 Yes ADDD 7 3 Ready 

Add3 No 

7 Mult1 Yes MULTD 3 2 Exe3 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 8 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

8 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 Add2 7 Mult2 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

1 Add2 Yes ADDD 7 3 Exe1 

Add3 No 

6 Mult1 Yes MULTD 3 2 Exe4 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 9 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

9 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 Add2 7 Mult2 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

0 Add2 Yes ADDD 7 3 Exe2 

Add3 No 

5 Mult1 Yes MULTD 3 2 Exe5 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 10 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

10 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 Add2 7 Mult2 

•  Add2 (ADDD) completing; what is waiting for it?  



S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 Yes ADDD 7 3 Commit 

Add3 No 

4 Mult1 Yes MULTD 3 2 Exe6 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 11 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

11 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 10 7 Mult2 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

3 Mult1 Yes MULTD 3 2 Exe7 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 12 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

12 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 10 7 Mult2 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

2 Mult1 Yes MULTD 3 2 Exe8 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 13 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

13 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 10 7 Mult2 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

1 Mult1 Yes MULTD 3 2 Exe9 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 14 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

14 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 10 7 Mult2 



S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

0 Mult1 Yes MULTD 3 2 Exe10 

Mult2 Yes DIVD 10 Mult1 Waiting 
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Tomasulo Example – Cycle 15 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 15 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

15 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU Mult1 3 2 10 7 Mult2 

•  Mult1 (MULTD) completing; what is waiting for it?  

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

Mult1 Yes MULTD 3 2 Commit 

40 Mult2 Yes DIVD 6 10 Ready 
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Tomasulo Example – Cycle 16 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 15 16 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

16 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU 6 3 2 10 7 Mult2 

•  Just waiting for Mult2 (DIVD) to complete 
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Faster than light computation 
(skip a couple of cycles) 

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

Mult1 No 

1 Mult2 Yes DIVD 6 10 Exe39 
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Tomasulo Example – Cycle 55 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 15 16 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

55 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU 6 3 2 10 7 Mult2 



S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

Mult1 No 

0 Mult2 Yes DIVD 6 10 Exe40 
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Tomasulo Example – Cycle 56 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 15 16 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 56 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

56 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU 6 3 2 10 7 Mult2 

•  Mult2 (DIVD) is completing; what is waiting for it?  

S1 S2 RS RS 

Time Name Busy OP Vj Vk Qj Qk Status 

Add1 No 

Add2 No 

Add3 No 

Mult1 No 

Mult2 Yes DIVD 6 10 Commit 
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Tomasulo Example – Cycle 57 
Exec Write 

Inst j k Issue Comp Result 

LD F6 34+ R2 1 3 4 

LD F2 45+ R3 2 4 5 

MULTD F0 F2 F4 3 15 16 

SUBD F8 F6 F2 4 7 8 

DIVD F10 F0 F6 5 56 57 

ADDD F6 F8 F2 6 10 11 

Instruction Status: Busy Address Status 

Load1 No 

Load2 No 

Load3 No 

Reservation Stations: 

Register Result Status: 

Clock 

57 
F0 F2 F4 F6 F8 F10 F12 … F30 

FU 6 3 2 10 7 0.6 

•  Once again: In-order
 issue, out-of-order
 execution and out-of
-order completion. 
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Why can Tomasulo overlap
 iterations of loops? 

•  Register renaming 
– Multiple iterations use different physical destinations for

 registers (dynamic loop unrolling). 

•  Reservation stations  
–  Permit instruction issue to advance past integer control flow

 operations 
– Also buffer old values of registers - totally avoiding the WAR

 stall  

•  Other perspective: Tomasulo building data
 flow dependency graph on the fly 
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Tomasulo’s scheme offers 2 major
 advantages 
1.  Distribution of the hazard detection logic 

–  distributed reservation stations and the CDB 
–  Simultaneous instruction release - If multiple

 instructions waiting on single result, & each
 instruction has other operand, then instructions can
 be released simultaneously by broadcast on CDB  

–  Don’t have to wait on centralized register file 
»   the units would have to read their results from the

 registers when register buses are available 

2.  Elimination of stalls for WAW and WAR
 hazards 
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Tomasulo Drawbacks 

•  Many associative stores (CDB) at high speed 
•  Performance limited by Common Data Bus 

–  Each CDB must go to multiple functional units  
!high capacitance, high wiring density 

– Number of functional units that can complete per cycle
 limited to one! 

» Multiple CDBs ! more FU logic for parallel assoc stores 

•  Non-precise interrupts! 
– We will address this later 
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Outline 
•  Speculation 
•  Adding Speculation to Tomasulo 
•  Exceptions 
•  VLIW 
•  Increasing instruction bandwidth 
•  Register Renaming vs. Reorder Buffer 
•  Value Prediction 
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Speculation to greater ILP 
•  How do we get greater ILP:  

–  Overcome control dependence by hw speculating outcome of
 branches  
»  Execute program as if guesses were correct 

–  2 methods: 
»  Dynamic scheduling ! only fetches and issues

 instructions  
»  Speculation ! fetch, issue, and execute instructions

 as if branch predictions were always correct  
•  Essentially a data flow execution model:

 Operations execute as soon as their operands are
 available   
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Speculation to greater ILP 

•  What do we need?  
–  3 components of HW-based speculation: 

1.  Dynamic branch prediction to choose which
 instructions to execute  

2.  Speculation to allow execution of instructions before
 control dependences are resolved  

+ ability to undo effects of incorrectly speculated sequence  

3.  Dynamic scheduling to deal with scheduling of
 different combinations of basic blocks  
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Outline 
•  Speculation 
•  Adding Speculation to Tomasulo 
•  Exceptions 
•  VLIW 
•  Increasing instruction bandwidth 
•  Register Renaming vs. Reorder Buffer 
•  Value Prediction 
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Adding Speculation to Tomasulo 
•  Separate execution from finishing 

–  This additional step called instruction commit 

•  Update register file/memory only when
 instruction is no longer speculative 

•  Additional requirements - reorder buffer (ROB)  
–  Set of buffers to hold results of instructions that have

 finished execution but have not committed 
–  Also used to pass results among instructions that may be

 speculated 
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Reorder Buffer (ROB) 
•  In Tomasulo’s algorithm, results are written to

 the register file after an instruction is finished 
•  With speculation, the register file is not updated

 until the instruction commits  
–  (we know definitively that the instruction should execute) 

•  But instruction cannot commit until it is no
 longer speculative 

•  ROB stores results while instruction is still
 speculative 

–  Like reservation stations, ROB is a source of operands 
–  ROB extends architectural registers like RS 
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Reorder Buffer Entry 
•  ROB contains four fields:  
1.  Instruction type  

•  a branch (has no destination result), a store (has a memory
 address destination), or a register operation (ALU operation
 or load, which has register destinations) 

2.  Destination 
•  Register number (for loads and ALU operations) or  

memory address (for stores)  
where the instruction result should be written 

3.  Value 
•  Value of instruction result until the instruction commits 

4.  Ready 
•  Indicates that instruction has completed execution, and the

 value is ready 
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Reorder Buffer operation 
•  Holds instructions in FIFO order, exactly as issued  

–  Must have notion of time for in-order commit 

•  When instructions complete, results placed into ROB 
–  Supplies operands ! more registers like RS 
–  Waiting operands tagged with ROB buffer number instead of RS 

•  Instructions commit ! values at head of ROB placed in registers 
•  As a result, easy to undo  

speculated instructions  
on mispredicted branches  
or on exceptions 

Reorder 
Buffer FP 

Op 
Queue 

FP Adder FP Adder 
Res Stations Res Stations 

FP Regs 

Commit path 

9/27/10 82 

Recall: 4 Steps of Speculative Tomasulo
 Algorithm 
1. Issue—get instruction from FP Op Queue 

  If reservation station and reorder buffer slot free, issue instr & send
 operands & reorder buffer no. for destination (this stage sometimes
 called “dispatch”) 

2. Execution—operate on operands (EX) 
  When both operands ready then execute; if not ready, watch CDB for

 result; when both in reservation station, execute; checks RAW
 (sometimes called “issue”) 

3. Write result—finish execution (WB) 
  Write on Common Data Bus to all awaiting FUs  

& reorder buffer; mark reservation station available. 
4. Commit—update register with reorder result 

  When instr. at head of reorder buffer & result present, update register
 with result (or store to memory) and remove instr from reorder buffer.
 Mispredicted branch flushes reorder buffer (sometimes called
 “graduation”) 

New stuff is in blue 
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Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 F0 LD F0,10(R2) N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

1 10+R2 
Dest 

Reorder Buffer 

Registers 
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2 ADDD R(F4),ROB1 

Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

F10 
F0 

ADDD F10,F4,F0 
LD F0,10(R2) 

N 
N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

1 10+R2 
Dest 

Reorder Buffer 

Registers 
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3 DIVD ROB2,R(F6) 
2 ADDD R(F4),ROB1 

Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

F2 
F10 
F0 

DIVD F2,F10,F6 
ADDD F10,F4,F0 
LD F0,10(R2) 

N 
N 
N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

1 10+R2 
Dest 

Reorder Buffer 

Registers 
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3 DIVD ROB2,R(F6) 
2 ADDD R(F4),ROB1 
6 ADDD ROB5, R(F6) 

Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

F0 ADDD F0,F4,F6 N 
F4 LD F4,0(R3) N 
-- BNE F2,<…> N 
F2 
F10 
F0 

DIVD F2,F10,F6 
ADDD F10,F4,F0 
LD F0,10(R2) 

N 
N 
N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

1 10+R2 
Dest 

Reorder Buffer 

Registers 

5  0+R3 

Predicted instruction 
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3 DIVD ROB2,R(F6) 
2 ADDD R(F4),ROB1 
6 ADDD ROB5, R(F6) 

Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

-- 
F0 

ROB5 ST 0(R3),F4 
ADDD F0,F4,F6 

N 
N 

F4 LD F4,0(R3) N 
-- BNE F2,<…> N 
F2 
F10 
F0 

DIVD F2,F10,F6 
ADDD F10,F4,F0 
LD F0,10(R2) 

N 
N 
N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

Dest 

Reorder Buffer 

Registers 

1 10+R2 
5  0+R3 

Executed
 out-of
-order 
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3 DIVD ROB2,R(F6) 

Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

-- 
F0 

M[0+R3] ST 0(R3),F4 
ADDD F0,F4,F6 

Y 
N 

F4 M[0+R3] LD F4,0(R3) Y 
-- BNE F2,<…> N 
F2 
F10 
F0 

DIVD F2,F10,F6 
ADDD F10,F4,F0 
LD F0,10(R2) 

N 
N 
N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

1 10+R2 
Dest 

Reorder Buffer 

Registers 

2 ADDD R(F4),ROB1 
6 ADDD M[0+R3],R(F6) 
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3 DIVD ROB2,R(F6) 
2 ADDD R(F4),ROB1 

Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

-- 
F0 

M[0+R3] 
<val2> 

ST 0(R3),F4 
ADDD F0,F4,F6 

Y 
Ex 

F4 M[0+R3] LD F4,0(R3) Y 
-- BNE F2,<…> N 
F2 
F10 
F0 

DIVD F2,F10,F6 
ADDD F10,F4,F0 
LD F0,10(R2) 

N 
N 
N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

1 10+R2 
Dest 

Reorder Buffer 

Registers 

Can’t commit done inst. Still spec 
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-- 
F0 

M[10] 
<val2> 

ST 0(R3),F4 
ADDD F0,F4,F6 

Y 
Ex 

F4 M[10] LD F4,0(R3) Y 
-- BNE F2,<…> N 

3 DIVD ROB2,R(F6) 
2 ADDD R(F4),ROB1 

Tomasulo With Reorder buffer: 

To 
Memory 

FP adders FP multipliers 

Reservation  
Stations 

FP Op 
Queue 

ROB7 
ROB6 

ROB5 

ROB4 

ROB3 

ROB2 

ROB1 

F2 
F10 
F0 

DIVD F2,F10,F6 
ADDD F10,F4,F0 
LD F0,10(R2) 

N 
N 
N 

Done? 

Dest Dest 

Oldest 

Newest 

from  
Memory 

1 10+R2 
Dest 

Reorder Buffer 

Registers 

What about memory 
hazards??? 
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Avoiding Memory Hazards 
•  How does hardware handle out-of-order memory

 accesses? 
–  WAW and WAR hazards through memory are eliminated with

 speculation because actual updating of memory occurs in order,
 when a store is at head of the ROB, and hence, no earlier loads or
 stores can still be pending  

–  Problem only if we commit out-of-order so we commit sequentially 
•  RAW hazards through memory are maintained by two

 restrictions:  
1.  not allowing a load to initiate the second step of its execution if any

 active ROB entry occupied by a store has a Destination field that
 matches the value of the A field of the load, and  

2.  maintaining the program order for the computation of an effective
 address of a load with respect to all earlier stores. 

•  these restrictions ensure that any load that accesses a
 memory location written to by an earlier store cannot
 perform the memory access until the store has written the
 data 
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Outline 
•  Speculation 
•  Adding Speculation to Tomasulo 
•  Exceptions 
•  VLIW 
•  Increasing instruction bandwidth 
•  Register Renaming vs. Reorder Buffer 
•  Value Prediction 
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Exceptions and Interrupts 
•  IBM 360/91 invented “imprecise interrupts” 

–  Just a guess 
–  Computer stopped at this PC; its likely close to this address 
–  Due to out-of-order commit 
–  Not so popular with programmers - hard to find bugs 
–  Bad for page faults, which instruction caused it 

•  Technique for both precise interrupts/exceptions and
 speculation: in-order completion and in-order commit 

–  If we speculate and are wrong, need to back up and restart execution
 to point at which we predicted incorrectly 

–  Branch speculation is the same as precise exceptions 
•  Only recognize exception when ROB is ready to commit 

–  If a speculated instruction raises an exception, the exception is
 recorded in the ROB 

–  This is why reorder buffers in all new processors 
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•  Value Prediction 
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Getting CPI below 1 
•  CPI ! 1 if issue only 1 instruction every clock cycle  
•  How do we get CPI <= 1? 

–  Multiple-issue processors come in 3 flavors:  
1.  Compiler - statically-scheduled superscalar

 processors 
•  use in-order execution if they are statically scheduled 

2.  Runtime - dynamically-scheduled superscalar
 processors 

•  out-of-order execution if they are dynamically scheduled 
3.  Compiler - VLIW (very long instruction word)

 processors 
•  VLIW processors, in contrast, issue a fixed number of instructions

 formatted either as one large instruction or as a fixed instruction packet
 with the parallelism among instructions explicitly indicated by the
 instruction (Intel/HP Itanium) 
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VLIW: Very Large Instruction Word 

•  Each “instruction” has explicit coding for multiple
 operations 

–  In IA-64, grouping called a “packet” 
–  In Transmeta, grouping called a “molecule” (with “atoms” as ops) 

•  Tradeoff instruction space for simple decoding 
–  Fixed size instruction like in RISC 

»  The long instruction word has room for many operations 
–  All operations in each instruction execute in parallel 
–  E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch 

»  16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide 
–  Need compiling technique that schedules across several branches 
–  Assume compiler can figure out the parallelism and assume that it is

 correct - no hardware checks 
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Recall: Unrolled Loop that Minimizes
 Stalls for Scalar 

1 Loop:  L.D  F0,0(R1) 
2  L.D  F6,-8(R1) 
3  L.D  F10,-16(R1) 
4  L.D  F14,-24(R1) 
5  ADD.D  F4,F0,F2 
6  ADD.D  F8,F6,F2 
7  ADD.D  F12,F10,F2 
8  ADD.D  F16,F14,F2 
9  S.D  0(R1),F4 
10  S.D  -8(R1),F8 
11  S.D  -16(R1),F12 
12  DSUBUI  R1,R1,#32 
13  BNEZ  R1,LOOP 
14  S.D  8(R1),F16  ; 8-32 = -24 

14 clock cycles, or 3.5 per iteration 

L.D to ADD.D: 1 Cycle 
ADD.D to S.D: 2 Cycles 

9/27/10 98 

Loop Unrolling in VLIW 

Memory  Memory  FP  FP  Int. op/  Clock 
reference 1  reference 2  operation 1   op. 2  branch 

L.D F0,0(R1)  L.D F6,-8(R1)     1 
L.D F10,-16(R1)  L.D F14,-24(R1)   

  2 
L.D F18,-32(R1)  L.D F22,-40(R1)  ADD.D F4,F0,F2  ADD.D F8,F6,F
2  3 
L.D F26,-48(R1)   ADD.D F12,F10,F2  ADD.D F16,F14,F2  4 

  ADD.D F20,F18,F2 ADD.D F24,F22,F2  5 
S.D 0(R1),F4  S.D -8(R1),F8  ADD.D F28,F26,F2    6 
S.D -16(R1),F12  S.D -24(R1),F16     7 
S.D -32(R1),F20  S.D -40(R1),F24    DSUBUI  R1,R1,#48  8 
S.D -0(R1),F28     BNEZ R1,LOOP  9 
  Unrolled 7 times to avoid delays - more than before 
  7 results in 9 clocks, or 1.3 clocks per iteration (1.8X) 
  Average: 2.5 ops per clock, 50% efficiency 
  Note: Need more registers in VLIW (15 vs. 6 in SS) 
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Problems with 1st Generation VLIW 

•  Increase in code size 
–  generating enough operations in a straight-line code fragment

 requires ambitiously unrolling loops 
– whenever VLIW instructions are not full, unused functional

 units translate to wasted bits in instruction encoding 

•  Operated in lock-step; no hazard detection HW 
– Assume that “compiler knows best” - no hardware checking 
–  a stall in any functional unit pipeline caused entire processor

 and all operations in the instruction to stall, since all
 functional units must be kept synchronized 

– Compiler might prediction function units, but caches hard to
 predict 

•  Binary code compatibility 
–  Pure VLIW => different numbers of functional units and unit

 latencies require different versions of the code 
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Intel/HP IA-64 “Explicitly Parallel
 Instruction Computer (EPIC)” 

•  IA-64: instruction set architecture 
•  128 64-bit integer regs + 128 82-bit floating point regs 

–  Not separate register files per functional unit as in old VLIW 
•  Hardware checks dependencies  

(interlocks => binary compatibility over time) 
•  Predicated execution (select 1 out of 64 1-bit flags)  

=> 40% fewer mispredictions? 
•  Itanium™ was first implementation (2001) 

–  Highly parallel and deeply pipelined hardware at 800Mhz 
–  6-wide, 10-stage pipeline at 800Mhz on 0.18 " process 
–  First attempt, next would be better…. 

•  Itanium 2™ is name of 2nd implementation (2005) 
–  6-wide, 8-stage pipeline at 1666Mhz on 0.13 " process 
–  Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3 
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Increasing Instruction Fetch Bandwidth 

•  Predicts next
 address, sends it
 out before decoding
 instruction 

•  PC of branch sent to
 BTB 

•  When match is
 found, Predicted PC
 is returned 

•  If branch predicted
 taken, instruction
 fetch continues at
 Predicted PC 

•  Allows fetching
 back-to-back
 instructions 

Branch Target Buffer (BTB) 
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IF BW: Return Address Predictor 
•  Small buffer of

 return addresses
 acts as a stack 

•  Caches most
 recent return
 addresses 

•  Call ! Push a
 return address  
on stack 

•  Return ! Pop an
 address off stack
 & predict as new
 PC 
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More Instruction Fetch Bandwidth 

•  Integrated branch prediction  
–  branch predictor is part of instruction fetch unit and is

 constantly predicting branches 

•  Instruction prefetch  
–  Instruction fetch units prefetch to deliver multiple instruct.

 per clock, integrating it with branch prediction 

•  Instruction memory access and buffering  
–  Fetching multiple instructions per cycle: 

»  May require accessing multiple cache blocks (prefetch to
 hide cost of crossing cache blocks)  

»  Provides buffering, acting as on-demand unit to provide
 instructions to issue stage as needed and in quantity
 needed 
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9/27/10 106 

Speculation: Register Renaming vs. ROB 

•  Just have a larger physical set of registers
 combined with runtime register renaming 

–  replace both ROB and reservation stations 

•  Instruction issue maps names of architectural
 registers to physical register numbers in
 extended register set  

– On issue, allocates a new unused register for the destination  
(which avoids WAW and WAR hazards) 

–  Speculation recovery easy because a physical register
 holding an instruction destination does not become the
 architectural register until the instruction commits 

•  Most Out-of-Order processors today use
 extended registers with renaming 

•  Allows binary compatibility 
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Value Prediction 
•  Value prediction 

–  Attempts to predict value produced by instruction 
»  E.g., Loads a value that changes infrequently 

–  Value prediction is useful only if it significantly increases ILP 
»  Hard to get good accuracy # 50% 

•  Related topic is address aliasing prediction 
–  Do two registers point to the same memory location 
–  RAW for load and store or WAW for 2 stores 
–  Address alias prediction is both more stable and simpler since

 need not actually predict the address values, only whether such
 values conflict 

–  Has been used by a few processors 
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(Mis) Speculation on Pentium 4 

Integer Floating Point 

•  % of micro-ops not used 


