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Uniprocessor Performance (SPECint) -
 Revisited….yet again 

•  VAX          : 25%/year 1978 to 1986 
•  RISC + x86: 52%/year 1986 to 2002 
•  RISC + x86: ??%/year 2002 to present 

From Hennessy and Patterson,
 Computer Architecture: A Quantitative
 Approach, 4th edition, 2006!

3X 
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Déjà vu all over again? 
“… today’s processors … are nearing an impasse as technologies approach

 the speed of light..”  
David Mitchell, The Transputer: The Time Is Now (1989) 

•  Transputer had bad timing (Uniprocessor performance!) 
" Procrastination rewarded: 2X seq. perf. / 1.5 years 

•   “We are dedicating all of our future product development to multicore
 designs. … This is a sea change in computing”  

Paul Otellini, President, Intel (2005)  
•  All microprocessor companies switch to MP (2X CPUs / 2 yrs) 
" Procrastination penalized: 2X sequential perf. / 5 yrs 

Manufacturer/Year! AMD/’05! Intel/’06! IBM/’04! Sun/’05!
Processors/chip! 2! 2! 2! 8!
Threads/Processor! 1! 2! 2! 4!
Threads/chip! 2! 4! 4! 32!
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Other Factors Pushing Multiprocessors 
•  Growth in data-intensive applications 

– Data bases, file servers, …  
–  Inherently parallel - SMT can’t fully exploit 

•  Growing interest in servers, server perf. 
–  Internet 

•  Increasing desktop perf. less important
 (outside of graphics) 

– Don’t need to run Word any faster 
– But near unbounded performance increase has lead to

 terrible programming 
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Other Factors Pushing Multiprocessors 
•  Lessons learned: 

– Improved understanding in how to use
 multiprocessors effectively  

» Especially in servers where significant natural
 TLP 

– Advantages in replication rather than unique
 design 

» In uniprocessor, redesign every few years =
 tremendous R&D 

•  Or many designs for different customer demands (Celeron
 vs. Pentium) 

» Shift efforts to multiprocessor 
•  Simple add more processors for more performance 
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Flynn’s Taxonomy 
•  Flynn divided the world into two streams in 1966 =

 instruction and data 

•  SIMD " Data Level Parallelism 
•  MIMD " Thread Level Parallelism 
•  MIMD popular because  

–  Flexible: N pgms and 1 multithreaded pgm 
– Cost-effective: same MPU in desktop & MIMD 

Single Instruction Single
 Data (SISD) 
(Uniprocessor) 

Single Instruction Multiple
 Data SIMD 
(single PC: Vector, CM-2) 

Multiple Instruction Single
 Data (MISD) 
(????) 

Multiple Instruction Multiple
 Data MIMD 
(Clusters, SMP servers) 

M.J. Flynn, "Very High-Speed Computers",  
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.  
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Back to Basics 
•  A parallel computer is… 

–  … a collection of processing elements that cooperate and
 communicate to solve large problems fast. 

•  How do we build a parallel architecture? 
–  Computer Architecture + Communication Architecture 

•  2 classes of multiprocessors WRT memory: 
1.  Centralized Memory Multiprocessor  

•  Take  a single design and just keep adding more
 processors/cores 

•  few dozen processor chips (and < 100 cores) in 2006 
•  Small enough to share single, centralized memory 
•  But interconnect is becoming a bottleneck….. 

2.  Physically Distributed-Memory multiprocessor 
•  Can have larger number chips and cores  
•  BW demands are met by distributing memory among

 processors 
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Centralized vs. Distributed Memory 
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Interconnection network 
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Centralized Memory Distributed Memory  

Scale 

All memory is far Close memory and far memory 

Intel AMD 

Logically connected but
 on different banks 
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Centralized Memory Multiprocessor  
•  Also called symmetric multiprocessors (SMPs)  

•  main memory has a symmetric relationship to all processors 
•  All processors see same access time to memory 

•  Reducing interconnect bottleneck 
•  Large caches " single memory can satisfy memory demands

 of small number of processors 

•  How big can the design realistically be? 
•  Scale to a few dozen processors by using a switch and by

 using many memory banks 
•  Scaling beyond that is technically conceivable but….it

 becomes less attractive as the number of processors sharing
 centralized memory increases 

•  Longer wires = longer latency 
•  Higher load = higher power 
•  More contention = bottleneck for shared resource 
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Distributed Memory Multiprocessor  

•  Distributed memory is a “must have” for
 big designs 

•  Pros: 
•  Cost-effective way to scale memory bandwidth  

•  If most accesses are to local memory 
•  Reduces latency of local memory accesses 

•  Cons:  
•  Communicating data between processors more complex 
•  Software aware 

•  Must change software to take advantage of
 increased memory BW 

10/21/10 14 

2 Models for Communication and
 Memory Architecture 
1.  message-passing multiprocessors  

•  Communication occurs by explicitly passing messages among
 the processors 

2.  shared memory multiprocessors  
•  Communication occurs through a shared address space (via

 loads and stores):  
either 
•  UMA (Uniform Memory Access time) for shared address,

 centralized memory MP 
•  NUMA (Non Uniform Memory Access time multiprocessor) for

 shared address, distributed memory MP 
•  More complicated 

•  In past, confusion whether “sharing” means
 sharing physical memory (Symmetric MP) or
 sharing address space 

10/21/10 15 

Outline 

•  MP Motivation 
•  SISD v. SIMD v. MIMD 
•  Centralized vs. Distributed Memory 
•  Challenges to Parallel Programming 
•  Consistency, Coherency, Write Serialization 
•  Snoopy Cache 
•  Directory-based protocols and examples 

10/21/10 16 

Challenges of Parallel Processing 

•  First challenge is % of program inherently
 sequential 

•  Suppose 80X speedup from 100 processors.
 What fraction of original program can be
 sequential? 
a. 10% 
b. 5% 
c. 1% 
d. <1% 
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Amdahl’s Law Answers  
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Challenges of Parallel Processing 

•  Second challenge is long latency to
 remote memory 

•  Suppose 32 CPU MP, 2GHz, 200 ns remote
 memory (400 clock cycles), all local
 accesses hit memory hierarchy and base
 CPI is 0.5.  

•  What is the performance impact if 0.2%
 instructions involve remote access? 
a.  1.5X 
b.  2.0X 
c.  2.5X 
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CPI Equation  
•  CPI = Base CPI +  

 Remote request rate  
 x Remote request cost 

•  CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3 
•  No communication is 1.3/0.5 or 2.6 faster

 than when 0.2% instructions involve
 remote access 
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Challenges of Parallel Processing 

1.  Need new advances in algorithms  
•  Application parallelism 

2.  New programming languages 
•  Hard to program parallel applications 

3.  How to deal with long remote latency
 impact 
•  both by architect and by the programmer  
–  For example, reduce frequency of remote accesses

 either by  
»  Caching shared data (HW)  
»  Restructuring the data layout to make more accesses

 local (SW) 
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Symmetric Shared-Memory Architectures
 - UMA 

•  From multiple boards on a shared bus to
 multiple processors inside a single chip 

•  Equal access time for all processors to
 memory via shared bus 

•  Each processor will cache both 
– Private data are used by a single processor 
– Shared data are used by multiple processors 

•  Advantage of caching shared data  
– Reduces latency to shared data, memory bandwidth for

 shared data, and interconnect bandwidth 
– But adds cache coherence problem 
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Example Cache Coherence Problem 

–  Processors see different values for u after event 3 
–  With write back caches, depends on which cache flushes first 

»  Processes accessing main memory may see very stale value 
–  Unacceptable for programming, and its frequent! 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 
u  = ? 

4 

u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 
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Not Just Cache Coherency…. 

•  Getting single variable values coherent isn’t the
 only issue 

–  Coherency alone doesn’t lead to correct program execution 

•  Also deals with synchronization of different
 variables that interact 

–  Shared data values not only need to be coherent but order of
 access to those values must be protected 
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Example 

•  expect memory to respect order between accesses to
 different locations issued by a given process 

–  to preserve orders among accesses to same location by different
 processes 

•  Coherence is not enough! 
–  pertains only to single location 

P 1 P 2 
/*Assume initial value of A and  flag is 0*/ 

A = 1; while (flag == 0);  /*spin idly*/ 
flag = 1; print A; 

Mem 

P 1 P n 

Conceptual  
Picture 
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Intuitive Memory Model 

•  Too vague and simplistic; 2 issues 
1.  Coherence defines values returned by a read 
2.  Consistency determines when a written value will be returned

 by a read 
•  Coherence defines behavior to same location,

 Consistency defines behavior to other locations 

•  Reading an address should
 return the last value
 written to that address 
–  Easy in uniprocessors 
–  In multiprocessors, more

 complicated than just seeing
 the last value written 

»  How do you define write
 order between different
 processes 

This process should see value
 written immediately 
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Defining Coherent Memory System 
1.  Preserve Program Order: A read by processor P to

 location X that follows a write by P to X, with no writes of
 X by another processor occurring between the write and
 the read by P, always returns the value written by P  

2.  Coherent view of memory: Read by a processor to
 location X that follows a write by another processor to X
 returns the written value if the read and write are
 sufficiently separated in time (hardware recognition
 time) and no other writes to X occur between the two
 accesses  

3.  Write serialization: 2 writes to same location by any 2
 processors are seen in the same order by all processors  
–  If not, a processor could keep value 1 since saw as last write 
–  For example, if the values 1 and then 2 are written to a

 location, processors can never read the value of the
 location as 2 and then later read it as 1 
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Write Consistency 

•  For now assume 
1.  A write does not complete (and allow the next

 write to occur) until all processors have seen the
 effect of that write 

2.  The processor does not change the order of any
 write with respect to any other memory access 

" if a processor writes location A followed by
 location B, any processor that sees the new
 value of B must also see the new value of A  

•  These restrictions allow the processor to reorder
 reads, but forces the processor to finish writes
 in program order 
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Basic Schemes for Enforcing Coherence 

•  Problem = Program on multiple processors will
 normally have copies of the same data in several
 caches 

•  Rather than trying to avoid sharing in SW,  
SMPs use a HW protocol to maintain coherent caches
 through: 

–  Migration - data can be moved to a local cache and used there in a
 transparent fashion  

»  Reduces both latency to access shared data that is allocated
 remotely and bandwidth demand on the shared memory 

–  Replication – for shared data being simultaneously read, since
 caches make a copy of data in local cache 

»  Reduces both latency of access and contention for read shared
 data 
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2 Classes of Cache Coherence Protocols 

1.  Snooping — Every cache with a copy of data also has a
 copy of sharing status of block, but no centralized state
 is kept 
•  All caches are accessible via some broadcast medium (a bus

 or switch)  
•  All cache controllers monitor or snoop on the medium to

 determine whether or not they have a copy of a block that is
 requested on a bus or switch access 

•  Emphasis for now with systems because they are small
 enough 

2.  Directory based — Sharing status of a block of physical
 memory is kept in just one location, the directory 
•  Old method revisited to deal with future larger systems 
•  Moving from bus topology to switch topology 

10/21/10 32 

Snooping Cache-Coherence Protocols 

•  Each processors cache controller “snoops” all transactions on
 the shared medium (bus or switch) 

–  Attractive solution with common broadcast bus 
–  Only interested in relevant transaction 
–  take action to ensure coherence 

»  invalidate, update, or supply value 
–  depends on state of the block and the protocol 

•  Either get exclusive access before write via write invalidate or
 update all copies on write 

•  Advantages: 
–  Distributed model 
–  Only a slightly more complicated state machine 
–  Doesn’t cost much WRT hw 

State 
Address 
Data 
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Example: Write-thru Invalidate 

•  Must invalidate before step 3 
•  Could just broadcast new data value, all caches update to

 reflect 
–  Write update uses more bandwidth - too much 
–  all recent MPUs use write invalidate 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

7 
u  = ? 

7 

u  = ? 

u  :5 
1 

u  :5 

2 

u  :5 

3 

u  = 7 

u = 7 
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Architectural Building Blocks - What
 do we need? 
•  Cache block state transition diagram 

–  FSM specifying how state of block changes 
»  invalid, valid, dirty 

–  Logically need FSM for each cache block, not how it is implemented but
 we will envision this scenario 

•  Broadcast Medium (e.g., bus) 
–  Logically single set of wires connect several devices 
–  Protocol: arbitration, command/addr, data 
"  Every device observes every transaction 

•  Broadcast medium enforces serialization of read or write
 accesses " Write serialization 

–  1st processor to get medium invalidates others copies 
–  Implies cannot complete write until it obtains bus 

•  Also need method to find up-to-date copy of cache block 
–  If write-back, copy may be in anther processors L1 cache 
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How to locate up-to-date copy of data 
•  Write-through:  

–  Reads always get up-to-date copy from memory 
–  Write through simpler if enough memory BW 

•  Write-back harder 
–  Most recent copy can be in any cache 
–  Lower memory bandwidth 
–  Most multiprocessors use write-back 

•  Can use same snooping mechanism 
1. Snoop every address placed on the bus 
2.  If a processor has dirty copy of requested cache

 block, it provides it in response to a read request
 and aborts the memory access 

–  Complexity from retrieving cache block from a processor
 cache, which can take longer than retrieving it from memory
 (which is optimized)  10/21/10 36 

Cache Resources for WB Snooping 

•  Normal cache tags can be used  for snooping 
•  Valid bit per block makes invalidation easy 
•  Reads 

– misses easy since rely on snooping 
–  Processors respond if they have dirty data from a read

 miss 
•  Writes 

–  Need to know whether any other copies of the block are
 cached 

»  No other copies " No need to place write on bus for WB 
»  Other copies " Need to place invalidate on bus 
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Cache Resources for WB Snooping 

•  Need one extra state bit to track whether a cache
 block is shared 

– Write to Shared block " Need to place invalidate on
 bus and mark cache block as exclusive (if an option) 

– No further invalidations will be sent for that block 
–  This processor called owner of cache block 
– Owner then changes state from shared to unshared (or

 exclusive) 
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Example Protocol - Start Simple 

•   Snooping coherence protocol is usually
 implemented by incorporating a finite-state
 controller in each node 

•  Logically, think of a separate controller
 associated with each cache block 

–  That is, snooping operations or cache requests for different
 blocks can proceed independently 

•  In implementations, a single controller allows
 multiple operations to distinct blocks to proceed
 in interleaved fashion  

–  that is, one operation may be initiated before another is
 completed, even through only one cache access or one bus
 access is allowed at time  
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Write-through Invalidate Protocol 

•  2 states per block in each cache 
–  as in uniprocessor 
–  Hardware state bits associated with

 blocks that are in the cache  
–  other blocks can be seen as being in

 invalid (not-present) state in that cache 

•  Writes invalidate all other cache
 copies (write no-alloc) 
–  can have multiple simultaneous readers

 of block,but write invalidates them 

I 

V 
BusWr / - 

PrRd/ -- 
PrWr / BusWr 

PrWr / BusWr 

PrRd / BusRd 

State  Tag   Data 

I/O devices Mem 

P 1 

$ $ 

P n 

Bus 

State  Tag   Data 

PrRd: Processor Read 
PrWr: Processor Write  
BusRd: Bus Read 
BusWr: Bus Write 
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Is 2-state Protocol Coherent? 
•  Processor only observes state of memory system by issuing

 memory operations 
–  If processor only does ALU operations, doesn’t see see state of

 memory 
•  Assume bus transactions and memory operations are atomic

 and a one-level cache 
–  one bus transaction complete before next one starts 
–  processor waits for memory operation to complete before issuing next 
–  with one-level cache, assume invalidations applied during bus transaction 

•  All writes go to bus + atomicity 
–  Writes serialized by order in which they appear on bus (bus order) 
=> invalidations applied to caches in bus order 

•  How to insert reads in this order? 
–  Important since processors see writes through reads, so determines

 whether write serialization is satisfied 
–  But read hits may happen independently and do not appear on bus or

 enter directly in bus order 

•  Let’s understand other ordering issues 
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Ordering 

•  Writes establish a partial ordering for the reads 
•  Doesn’t constrain ordering of reads, though  

shared-medium (bus) will order read misses too 
–  any order among reads between writes is fine,  

as long as in program order 
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Example Write Back Snoopy Protocol 

•  Look at invalidation protocol with a write-back cache 
–  Snoops every address on bus 
–  If cache has a dirty copy of requested block, provides that block in

 response to the read request and aborts the memory access 

•  Each memory block is in one state (implied): 
–  Clean in all caches and up-to-date in memory (Shared) 
–  OR Dirty in exactly one cache (Exclusive) 
–  OR Not in any caches 

•  Each cache block is in one state (track these): 
–  Shared : block can be read 
–  OR Exclusive : cache has only copy, its writeable, and dirty 
–  OR Invalid : block contains no data (in uniprocessor cache too) 

•  Read misses: cause all caches to snoop bus 
•  Writes to clean blocks are treated as misses 
•  Assume write-allocate in this example 

CPU Read miss 
Place read miss  
on bus 

Write-Back State Machine - CPU 
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•  State machine 
for CPU requests 
for each  
cache block 

Invalid 
Shared 

(read/only) 

Exclusive 
(read/write) 

CPU Read 

CPU Write 

CPU Read hit 

Place read miss 
on bus 

Place Write  
Miss on bus 

CPU read miss 
Write back dirty
 cache block, 
Place read  
miss on bus CPU Write 

Place Write Miss on Bus 

CPU Write Miss 
Write back dirty cache block 
Place write miss on bus 

CPU read hit 
CPU write hit 

Cache Block 
State 
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Write-Back State Machine- Bus request 
•  State machine 

for bus requests 
 for each  
cache block Invalid Shared 

(read/only) 

Exclusive 
(read/write) 

Write Back 
Block; (abort 
memory access) 

Write miss  
for this block 

Read miss  
for this block 

Write miss  
for this block 

Write Back 
Block; (abort 
memory access) 



10/21/10 45 

Place read miss 
on bus 

Write-back State Machine - Putting
 it all Together  

•  State machine 
for CPU requests 
for each  
cache block and 
 for bus requests 
 for each  
cache block 

Invalid 
Shared 

(read/only) 

Exclusive 
(read/write) 

CPU Read 

CPU Write 

CPU Read hit 

Place Write  
Miss on bus 
CPU read miss 
Write back block, 
Place read miss 
on bus CPU Write 

Place Write Miss on Bus 

CPU Read miss 
Place read miss  
on bus 

CPU Write Miss 
Write back cache block 
Place write miss on bus 

CPU read hit 
CPU write hit 

Cache Block 
State 

Write miss  
for this block 

Write Back 
Block; (abort 
memory access) 

Write miss  
for this block 

Read miss  
for this block 

Write Back 
Block; (abort 
memory access) 
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Example 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 

Goes to shared because it is clean 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 
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Example 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Implementation Complications 

•  Write Races - Who writes first?? 
–  Cannot update cache until bus is obtained 

»  Otherwise, another processor may get bus first,  
and then write the same cache block! 

–  Two step process: 
»  Arbitrate for bus  
»  Place miss on bus and complete operation (update cache) 

–  If write miss occurs to block while waiting for bus,  
handle miss (invalidate may be needed) and then restart. 

–  Split transaction bus: 
»  Bus transaction is not really atomic:  

can have multiple outstanding transactions for a block 
»  Multiple misses can interleave,  

allowing two caches to grab block in the Exclusive state 
»  Must track and prevent multiple misses for one block 

•  Must support interventions and invalidations 
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Limitations in Symmetric Shared-Memory
 Multiprocessors and Snooping Protocols 
•  Single memory accommodate all CPUs even

 though there may be multiple memory banks 
•  Bus-based  

– must support both coherence traffic &
 normal memory traffic 

– Solution: 
» Multiple buses or interconnection networks

 (cross bar or small point-to-point) 
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Performance of Symmetric Shared-Memory
 Multiprocessors 
•  Cache performance is combination of  

1. Uniprocessor cache miss traffic 

2. Traffic caused by communication  
»  Results in invalidations and subsequent cache misses 

•  4th C: coherence miss 
–  Joins Compulsory, Capacity, Conflict 
–  How significant are coherence misses? 
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Coherency Misses 
1.  True sharing misses  

•  Processes must share data for communication or
 processing 

•  Types: 
•  Invalidates due to 1st write to shared block 
•  Reads by another CPU of modified block in different cache 
•  Miss would still occur if block size were 1 word 

2.  False sharing misses  
•  When a block is invalidated because some word in the block,

 other than the one being read, is written into 
•  Invalidation does not cause a new value to be

 communicated, but only causes an extra cache miss 
•  Block is shared, but no word in block is actually shared 

 " miss would not occur if block size were 1 word 
•  Larger block sizes lead to more false sharing misses 
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Example: True v. False Sharing v. Hit? 

Time P1 P2 True, False, Hit? Why? 
1 Write x1 

2 Read x2 

3 Write x1 

4 Write x2 

5 Read x2 

•  Assume x1 and x2 in same cache block, different
 addresses in that block. 
  P1 and P2 both read x1 and x2 before. 

Hit, invalidate x1/x2 in P2 

False miss; x1 irrelevant to P2 

False miss; x1 irrelevant to P2 

True miss 

Hit, invalidate x1/x2 in P2 
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MP Performance 4 Processor  
Commercial Workload: OLTP, Decision
 Support (Database), Search Engine 

True and false sharing
 doesn’t change much
 as cache size increases 
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MP Performance 2MB Cache  
Commercial Workload: OLTP, Decision
 Support (Database), Search Engine 

True and false sharing
 increase as number of
 CPUs increase. This will
 become more
 significant in the future
 as we move to many
 more processors 
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Outline 

•  Coherence 
•  Write Consistency 
•  Snooping 
•  Building Blocks 
•  Snooping protocols and examples 
•  Coherence traffic and Performance on MP 
•  Directory-based protocols and examples  
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A Cache Coherent System Must: 
•  Provide set of states, state transition diagram,

 and actions 
•  Manage coherence protocol 

–  (0)  Determine when to invoke coherence protocol 
–  (a)  Find info about state of block in other caches to

 determine action 
»  whether need to communicate with other cached copies 

–  (b)  Locate  the other copies 
–  (c)  Communicate with those copies  (invalidate/update) 

•  (0) is done the same way on all systems 
–  state of the line is maintained in the cache 
–  protocol is invoked if an “access fault” occurs on the line 

•  Different approaches (snoopy and directory
 based) distinguished by (a) to (c) 
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Bus-based Coherence 

•  All of (a), (b), (c) done through broadcast on bus 
–  faulting processor sends out a “search”  
–  others respond to the search probe and take necessary

 action 

•  Conceptually simple, but broadcast doesn’t
 scale with p 

–  on bus, bus bandwidth doesn’t scale 
–  on scalable network, every fault leads to at least p network

 transactions 

•  Scalable coherence, how do we keep track as
 the number of processors gets larger 

–  can have same cache states and state transition diagram 
–  different mechanisms to manage protocol - directory based 
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Scalable Approach: Directories 

•   Every memory block has associated directory
 information 

–  keeps track of copies of cached blocks and their states 
–  on a miss, find directory entry, look it up, and communicate

 only with the nodes that have copies if necessary 
»  Presence bit keeps track of which processors have it. Use bit

 vector to save space 
»  Minimizes traffic, don’t just broadcast for each access 
»  Minimizes processing, not all processors have to check every

 address 
–  in scalable networks, communication with directory and

 copies is through network transactions 

•  Many alternatives for organizing directory
 information 

10/21/10 63 

Basic Operation of Directory 

•  k processors.   
•  With each cache-block in memory:  

k  presence-bits, 1 dirty-bit 
•  With each cache-block in cache:     

1 valid bit, and 1 dirty (owner) bit 

•  Example: 
–  Read from main memory by processor i: 

»  If dirty-bit OFF then { read from main memory; turn p[i] ON; } 
»  if dirty-bit ON   then { recall line from dirty proc; update memory;

 turn dirty-bit OFF; turn p[i] ON; supply recalled data to i} 

–  Write to main memory by processor i: 
»  If dirty-bit OFF then {send invalidations to all caches that have the

 block; turn dirty-bit ON; turn p[i] ON; ... } 
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Directory Protocol 

•  Similar to Snoopy Protocol: Three states similar to snoopy 
–  Shared: ! 1 processors have data, memory up-to-date 
–  Uncached (no processor has it; not valid in any cache) 
–  Exclusive: 1 processor (owner) has data;  

   memory out-of-date 

•  In addition to cache state, must track which processors
 have data when in the shared state (usually bit vector, 1 if
 processor has copy) - presence vector 

•  Keep it simple: 
–  Writes to non-exclusive data  

=> write miss 
–  Processor blocks until access completes 
–  Assume messages received and acted upon in order sent (not

 realistic but we will assume) 
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State Transition Diagram for One Cache
 Block in Directory Based System 

•  States identical to snoopy case;
 transactions very similar. 

•  Transitions caused by read misses, write
 misses, invalidates, data fetch requests 

10/21/10 66 

CPU -Cache State Machine 

•  State machine 
for requests 
for each  
memory block 

•  Invalid state 
if in memory 

Invalidate 
send Data Write Back message  

to directory 

Invalidate 

Invalid 

Exclusive 
(read/write) 

CPU Read 

CPU Read hit 

Send Read Miss 
message 

CPU Write:  
Send Write Miss  
message to 
directory 

CPU Write: Send  
Write Miss message 
to directory 

CPU read hit 
CPU write hit 

Fetch: send Data Write Back
 message to directory 

CPU read miss: 
Send Read Miss 

CPU write miss: 
send Data Write Back message  
and Write Miss to directory 

CPU read miss: send Data
 Write Back message and
 read miss to directory 

Shared 
(read/only) 
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State Transition Diagram for Directory  

•  Same states & structure as the transition
 diagram for an individual cache 

•  2 actions: update of directory state &
 send messages to satisfy requests  

•  Tracks all copies of memory block 
•  Also indicates an action that updates the

 sharing set, Sharers, as well as sending
 a message 

10/21/10 68 

Directory State Machine 

•  State machine 
for requests for each  
memory block 

•  Uncached state 
if in memory 

Data Write Back: 
Sharers = {} 

(Write back block) 

Uncached 
Shared 

(read only) 

Exclusive 
(read/write) 

Read miss: 
Sharers = {P} 
send Data Value  
Reply 

Write Miss:  
send Invalidate  
to Sharers; 
then Sharers = {P}; 
send Data Value  
Reply msg 

Write Miss: 
Sharers = {P};  
send Data  
Value Reply 
msg 

Read miss: 
send Fetch;  
Sharers += {P};  
send Data Value Reply 
msg to cache 
(Write back block) 

Read miss:  
Sharers += {P}; 
send Data Value Reply 

Write Miss: 
send fetch;  
Sharers = {P};  
send Data Value Reply 
msg to cache 
(Write back block) 
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Example 

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory 

A1 

Write Back 

A1 {P1} 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory 

A1 A1 {P1} 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 
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Example 

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory 

A1 A1 {P1} 

• Assumes A1 and A2 map to same cache location but are not in the same memory  
block (so not in the same cache block) 

* Initial cache state is invalid 
* Assume write allocate 

10/21/10 75 

Implementing a Directory 

•  We assume operations atomic, but they are not;
 reality is much harder; must avoid deadlock
 when run out of bufffers in network (see
 Appendix E) 

•  Optimizations: 
–  read miss or write miss in Exclusive: send data directly to

 requestor from owner vs. 1st to memory and then from
 memory to requestor 
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Example Directory Protocol (1st Read) 

E 

S 

I 

P1 $ 

E 

S 

I 

P2 $ 

E 

S 

U 

M Dir 
ctrl 

ld vA -> rd pA 

Read pA 

R/reply 

R/req 

P1: pA 

S 

S 

I I 

U 
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Example Directory Protocol (Read Share) 

E 

S 

I 

P1 $ 

E 

S 

I 

P2 $ 

E 

S 

U 

M Dir 
ctrl 

ld vA -> rd pA 

R/reply 

R/req 

P1: pA 

ld vA -> rd pA 

P2: pA 

R/req 
R/_ 

R/_ 

R/_ S 

S 

S 

I 
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Example Directory Protocol (Wr to shared) 

E 

S 

I 

P1 $ 

E 

S 

I 

P2 $ 

E 

S 

U 

M Dir 
ctrl 

st vA -> wr pA 

R/reply 

R/req 

P1: pA 

P2: pA 

R/req 

W/req E 

R/_ 

R/_ 

R/_ 

Invalidate pA Req_to_update pA 

Inv ACK 

RX/invalidate&reply 

S 

S 

S 

E 

E 

reply xD(pA) 

W/req E 
W/_ 

Inv/_ 

EX 

I 
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Example Directory Protocol (Wr to Ex) 

E 

S 

I 

P1 $ 

E 

S 

I 

P2 $ 

D 

S 

U 

M Dir 
ctrl R/reply 

R/req 

P1: pA 

st vA -> wr pA 

R/req 

W/req E 

R/_ 

R/_ 

R/_ 

Reply xD(pA) Write_back pA 

Read_toUpdate pA 

RX/invalidate&reply 

E 

E 

Inv pA  

W/req E 
W/_ 

Inv/_ Inv/_ 

W/req E W/_ 

I 

E 

W/req E 

RU/_ 


