
EEL 5764 Graduate Computer
 Architecture

 Chapter 4 - Multiprocessors and TLP

These slides are provided by:
David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross
Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

10/21/10 2

Outline

•  MP Motivation
•  SISD v. SIMD v. MIMD
•  Centralized vs. Distributed Memory
•  Challenges to Parallel Programming
•  Consistency, Coherency, Write Serialization
•  Snoopy Cache
•  Directory-based protocols and examples

10/21/10 3

Uniprocessor Performance (SPECint) -
 Revisited….yet again

•  VAX : 25%/year 1978 to 1986
•  RISC + x86: 52%/year 1986 to 2002
•  RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
 Computer Architecture: A Quantitative
 Approach, 4th edition, 2006!

3X

10/21/10 4

Déjà vu all over again?
“… today’s processors … are nearing an impasse as technologies approach

 the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

•  Transputer had bad timing (Uniprocessor performance!)
" Procrastination rewarded: 2X seq. perf. / 1.5 years

•  “We are dedicating all of our future product development to multicore
 designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005)
•  All microprocessor companies switch to MP (2X CPUs / 2 yrs)
" Procrastination penalized: 2X sequential perf. / 5 yrs

Manufacturer/Year! AMD/’05! Intel/’06! IBM/’04! Sun/’05!
Processors/chip! 2! 2! 2! 8!
Threads/Processor! 1! 2! 2! 4!
Threads/chip! 2! 4! 4! 32!

10/21/10 5

Other Factors Pushing Multiprocessors
•  Growth in data-intensive applications

– Data bases, file servers, …
–  Inherently parallel - SMT can’t fully exploit

•  Growing interest in servers, server perf.
–  Internet

•  Increasing desktop perf. less important
 (outside of graphics)

– Don’t need to run Word any faster
– But near unbounded performance increase has lead to

 terrible programming

10/21/10 6

Other Factors Pushing Multiprocessors
•  Lessons learned:

– Improved understanding in how to use
 multiprocessors effectively

» Especially in servers where significant natural
 TLP

– Advantages in replication rather than unique
 design

» In uniprocessor, redesign every few years =
 tremendous R&D

•  Or many designs for different customer demands (Celeron
 vs. Pentium)

» Shift efforts to multiprocessor
•  Simple add more processors for more performance

10/21/10 7

Outline

•  MP Motivation
•  SISD v. SIMD v. MIMD
•  Centralized vs. Distributed Memory
•  Challenges to Parallel Programming
•  Consistency, Coherency, Write Serialization
•  Snoopy Cache
•  Directory-based protocols and examples

10/21/10 8

Flynn’s Taxonomy
•  Flynn divided the world into two streams in 1966 =

 instruction and data

•  SIMD " Data Level Parallelism
•  MIMD " Thread Level Parallelism
•  MIMD popular because

–  Flexible: N pgms and 1 multithreaded pgm
– Cost-effective: same MPU in desktop & MIMD

Single Instruction Single
 Data (SISD)
(Uniprocessor)

Single Instruction Multiple
 Data SIMD
(single PC: Vector, CM-2)

Multiple Instruction Single
 Data (MISD)
(????)

Multiple Instruction Multiple
 Data MIMD
(Clusters, SMP servers)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

10/21/10 9

Outline

•  MP Motivation
•  SISD v. SIMD v. MIMD
•  Centralized vs. Distributed Memory
•  Challenges to Parallel Programming
•  Consistency, Coherency, Write Serialization
•  Snoopy Cache
•  Directory-based protocols and examples

10/21/10 10

Back to Basics
•  A parallel computer is…

–  … a collection of processing elements that cooperate and
 communicate to solve large problems fast.

•  How do we build a parallel architecture?
–  Computer Architecture + Communication Architecture

•  2 classes of multiprocessors WRT memory:
1.  Centralized Memory Multiprocessor

•  Take a single design and just keep adding more
 processors/cores

•  few dozen processor chips (and < 100 cores) in 2006
•  Small enough to share single, centralized memory
•  But interconnect is becoming a bottleneck…..

2.  Physically Distributed-Memory multiprocessor
•  Can have larger number chips and cores
•  BW demands are met by distributing memory among

 processors

10/21/10 11

Centralized vs. Distributed Memory

P 1

$

Interconnection network

$

P n

Mem Mem

P 1

$

Interconnection network

$

P n

Mem Mem

Centralized Memory Distributed Memory

Scale

All memory is far Close memory and far memory

Intel AMD

Logically connected but
 on different banks

10/21/10 12

Centralized Memory Multiprocessor
•  Also called symmetric multiprocessors (SMPs)

•  main memory has a symmetric relationship to all processors
•  All processors see same access time to memory

•  Reducing interconnect bottleneck
•  Large caches " single memory can satisfy memory demands

 of small number of processors

•  How big can the design realistically be?
•  Scale to a few dozen processors by using a switch and by

 using many memory banks
•  Scaling beyond that is technically conceivable but….it

 becomes less attractive as the number of processors sharing
 centralized memory increases

•  Longer wires = longer latency
•  Higher load = higher power
•  More contention = bottleneck for shared resource

10/21/10 13

Distributed Memory Multiprocessor

•  Distributed memory is a “must have” for
 big designs

•  Pros:
•  Cost-effective way to scale memory bandwidth

•  If most accesses are to local memory
•  Reduces latency of local memory accesses

•  Cons:
•  Communicating data between processors more complex
•  Software aware

•  Must change software to take advantage of
 increased memory BW

10/21/10 14

2 Models for Communication and
 Memory Architecture
1.  message-passing multiprocessors

•  Communication occurs by explicitly passing messages among
 the processors

2.  shared memory multiprocessors
•  Communication occurs through a shared address space (via

 loads and stores):
either
•  UMA (Uniform Memory Access time) for shared address,

 centralized memory MP
•  NUMA (Non Uniform Memory Access time multiprocessor) for

 shared address, distributed memory MP
•  More complicated

•  In past, confusion whether “sharing” means
 sharing physical memory (Symmetric MP) or
 sharing address space

10/21/10 15

Outline

•  MP Motivation
•  SISD v. SIMD v. MIMD
•  Centralized vs. Distributed Memory
•  Challenges to Parallel Programming
•  Consistency, Coherency, Write Serialization
•  Snoopy Cache
•  Directory-based protocols and examples

10/21/10 16

Challenges of Parallel Processing

•  First challenge is % of program inherently
 sequential

•  Suppose 80X speedup from 100 processors.
 What fraction of original program can be
 sequential?
a. 10%
b. 5%
c. 1%
d. <1%

10/21/10 17

Amdahl’s Law Answers

10/21/10 18

Challenges of Parallel Processing

•  Second challenge is long latency to
 remote memory

•  Suppose 32 CPU MP, 2GHz, 200 ns remote
 memory (400 clock cycles), all local
 accesses hit memory hierarchy and base
 CPI is 0.5.

•  What is the performance impact if 0.2%
 instructions involve remote access?
a.  1.5X
b.  2.0X
c.  2.5X

10/21/10 19

CPI Equation
•  CPI = Base CPI +

 Remote request rate
 x Remote request cost

•  CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3
•  No communication is 1.3/0.5 or 2.6 faster

 than when 0.2% instructions involve
 remote access

10/21/10 20

Challenges of Parallel Processing

1.  Need new advances in algorithms
•  Application parallelism

2.  New programming languages
•  Hard to program parallel applications

3.  How to deal with long remote latency
 impact
•  both by architect and by the programmer
–  For example, reduce frequency of remote accesses

 either by
»  Caching shared data (HW)
»  Restructuring the data layout to make more accesses

 local (SW)

10/21/10 21

Outline

•  MP Motivation
•  SISD v. SIMD v. MIMD
•  Centralized vs. Distributed Memory
•  Challenges to Parallel Programming
•  Consistency, Coherency, Write Serialization
•  Snoopy Cache
•  Directory-based protocols and examples

10/21/10 22

Symmetric Shared-Memory Architectures
 - UMA

•  From multiple boards on a shared bus to
 multiple processors inside a single chip

•  Equal access time for all processors to
 memory via shared bus

•  Each processor will cache both
– Private data are used by a single processor
– Shared data are used by multiple processors

•  Advantage of caching shared data
– Reduces latency to shared data, memory bandwidth for

 shared data, and interconnect bandwidth
– But adds cache coherence problem

10/21/10 23

Example Cache Coherence Problem

–  Processors see different values for u after event 3
–  With write back caches, depends on which cache flushes first

»  Processes accessing main memory may see very stale value
–  Unacceptable for programming, and its frequent!

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5
u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

10/21/10 24

Not Just Cache Coherency….

•  Getting single variable values coherent isn’t the
 only issue

–  Coherency alone doesn’t lead to correct program execution

•  Also deals with synchronization of different
 variables that interact

–  Shared data values not only need to be coherent but order of
 access to those values must be protected

10/21/10 25

Example

•  expect memory to respect order between accesses to
 different locations issued by a given process

–  to preserve orders among accesses to same location by different
 processes

•  Coherence is not enough!
–  pertains only to single location

P 1 P 2
/*Assume initial value of A and flag is 0*/

A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Mem

P 1 P n

Conceptual
Picture

10/21/10 26

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

•  Too vague and simplistic; 2 issues
1.  Coherence defines values returned by a read
2.  Consistency determines when a written value will be returned

 by a read
•  Coherence defines behavior to same location,

 Consistency defines behavior to other locations

•  Reading an address should
 return the last value
 written to that address
–  Easy in uniprocessors
–  In multiprocessors, more

 complicated than just seeing
 the last value written

»  How do you define write
 order between different
 processes

This process should see value
 written immediately

10/21/10 27

Defining Coherent Memory System
1.  Preserve Program Order: A read by processor P to

 location X that follows a write by P to X, with no writes of
 X by another processor occurring between the write and
 the read by P, always returns the value written by P

2.  Coherent view of memory: Read by a processor to
 location X that follows a write by another processor to X
 returns the written value if the read and write are
 sufficiently separated in time (hardware recognition
 time) and no other writes to X occur between the two
 accesses

3.  Write serialization: 2 writes to same location by any 2
 processors are seen in the same order by all processors
–  If not, a processor could keep value 1 since saw as last write
–  For example, if the values 1 and then 2 are written to a

 location, processors can never read the value of the
 location as 2 and then later read it as 1

10/21/10 28

Write Consistency

•  For now assume
1.  A write does not complete (and allow the next

 write to occur) until all processors have seen the
 effect of that write

2.  The processor does not change the order of any
 write with respect to any other memory access

" if a processor writes location A followed by
 location B, any processor that sees the new
 value of B must also see the new value of A

•  These restrictions allow the processor to reorder
 reads, but forces the processor to finish writes
 in program order

10/21/10 29

Outline

•  MP Motivation
•  SISD v. SIMD v. MIMD
•  Centralized vs. Distributed Memory
•  Challenges to Parallel Programming
•  Consistency, Coherency, Write Serialization
•  Snoopy Cache
•  Directory-based protocols and examples

10/21/10 30

Basic Schemes for Enforcing Coherence

•  Problem = Program on multiple processors will
 normally have copies of the same data in several
 caches

•  Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches
 through:

–  Migration - data can be moved to a local cache and used there in a
 transparent fashion

»  Reduces both latency to access shared data that is allocated
 remotely and bandwidth demand on the shared memory

–  Replication – for shared data being simultaneously read, since
 caches make a copy of data in local cache

»  Reduces both latency of access and contention for read shared
 data

10/21/10 31

2 Classes of Cache Coherence Protocols

1.  Snooping — Every cache with a copy of data also has a
 copy of sharing status of block, but no centralized state
 is kept
•  All caches are accessible via some broadcast medium (a bus

 or switch)
•  All cache controllers monitor or snoop on the medium to

 determine whether or not they have a copy of a block that is
 requested on a bus or switch access

•  Emphasis for now with systems because they are small
 enough

2.  Directory based — Sharing status of a block of physical
 memory is kept in just one location, the directory
•  Old method revisited to deal with future larger systems
•  Moving from bus topology to switch topology

10/21/10 32

Snooping Cache-Coherence Protocols

•  Each processors cache controller “snoops” all transactions on
 the shared medium (bus or switch)

–  Attractive solution with common broadcast bus
–  Only interested in relevant transaction
–  take action to ensure coherence

»  invalidate, update, or supply value
–  depends on state of the block and the protocol

•  Either get exclusive access before write via write invalidate or
 update all copies on write

•  Advantages:
–  Distributed model
–  Only a slightly more complicated state machine
–  Doesn’t cost much WRT hw

State
Address
Data

10/21/10 33

Example: Write-thru Invalidate

•  Must invalidate before step 3
•  Could just broadcast new data value, all caches update to

 reflect
–  Write update uses more bandwidth - too much
–  all recent MPUs use write invalidate

I/O devices

Memory

P 1

$ $ $

P 2 P 3

7
u = ?

7

u = ?

u :5
1

u :5

2

u :5

3

u = 7

u = 7

10/21/10 34

Architectural Building Blocks - What
 do we need?
•  Cache block state transition diagram

–  FSM specifying how state of block changes
»  invalid, valid, dirty

–  Logically need FSM for each cache block, not how it is implemented but
 we will envision this scenario

•  Broadcast Medium (e.g., bus)
–  Logically single set of wires connect several devices
–  Protocol: arbitration, command/addr, data
"  Every device observes every transaction

•  Broadcast medium enforces serialization of read or write
 accesses " Write serialization

–  1st processor to get medium invalidates others copies
–  Implies cannot complete write until it obtains bus

•  Also need method to find up-to-date copy of cache block
–  If write-back, copy may be in anther processors L1 cache

10/21/10 35

How to locate up-to-date copy of data
•  Write-through:

–  Reads always get up-to-date copy from memory
–  Write through simpler if enough memory BW

•  Write-back harder
–  Most recent copy can be in any cache
–  Lower memory bandwidth
–  Most multiprocessors use write-back

•  Can use same snooping mechanism
1. Snoop every address placed on the bus
2.  If a processor has dirty copy of requested cache

 block, it provides it in response to a read request
 and aborts the memory access

–  Complexity from retrieving cache block from a processor
 cache, which can take longer than retrieving it from memory
 (which is optimized) 10/21/10 36

Cache Resources for WB Snooping

•  Normal cache tags can be used for snooping
•  Valid bit per block makes invalidation easy
•  Reads

– misses easy since rely on snooping
–  Processors respond if they have dirty data from a read

 miss
•  Writes

–  Need to know whether any other copies of the block are
 cached

»  No other copies " No need to place write on bus for WB
»  Other copies " Need to place invalidate on bus

10/21/10 37

Cache Resources for WB Snooping

•  Need one extra state bit to track whether a cache
 block is shared

– Write to Shared block " Need to place invalidate on
 bus and mark cache block as exclusive (if an option)

– No further invalidations will be sent for that block
–  This processor called owner of cache block
– Owner then changes state from shared to unshared (or

 exclusive)

10/21/10 38

Example Protocol - Start Simple

•  Snooping coherence protocol is usually
 implemented by incorporating a finite-state
 controller in each node

•  Logically, think of a separate controller
 associated with each cache block

–  That is, snooping operations or cache requests for different
 blocks can proceed independently

•  In implementations, a single controller allows
 multiple operations to distinct blocks to proceed
 in interleaved fashion

–  that is, one operation may be initiated before another is
 completed, even through only one cache access or one bus
 access is allowed at time

10/21/10 39

Write-through Invalidate Protocol

•  2 states per block in each cache
–  as in uniprocessor
–  Hardware state bits associated with

 blocks that are in the cache
–  other blocks can be seen as being in

 invalid (not-present) state in that cache

•  Writes invalidate all other cache
 copies (write no-alloc)
–  can have multiple simultaneous readers

 of block,but write invalidates them

I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devices Mem

P 1

$ $

P n

Bus

State Tag Data

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus Write

10/21/10 40

Is 2-state Protocol Coherent?
•  Processor only observes state of memory system by issuing

 memory operations
–  If processor only does ALU operations, doesn’t see see state of

 memory
•  Assume bus transactions and memory operations are atomic

 and a one-level cache
–  one bus transaction complete before next one starts
–  processor waits for memory operation to complete before issuing next
–  with one-level cache, assume invalidations applied during bus transaction

•  All writes go to bus + atomicity
–  Writes serialized by order in which they appear on bus (bus order)
=> invalidations applied to caches in bus order

•  How to insert reads in this order?
–  Important since processors see writes through reads, so determines

 whether write serialization is satisfied
–  But read hits may happen independently and do not appear on bus or

 enter directly in bus order

•  Let’s understand other ordering issues

10/21/10 41

Ordering

•  Writes establish a partial ordering for the reads
•  Doesn’t constrain ordering of reads, though

shared-medium (bus) will order read misses too
–  any order among reads between writes is fine,

as long as in program order

10/21/10 42

Example Write Back Snoopy Protocol

•  Look at invalidation protocol with a write-back cache
–  Snoops every address on bus
–  If cache has a dirty copy of requested block, provides that block in

 response to the read request and aborts the memory access

•  Each memory block is in one state (implied):
–  Clean in all caches and up-to-date in memory (Shared)
–  OR Dirty in exactly one cache (Exclusive)
–  OR Not in any caches

•  Each cache block is in one state (track these):
–  Shared : block can be read
–  OR Exclusive : cache has only copy, its writeable, and dirty
–  OR Invalid : block contains no data (in uniprocessor cache too)

•  Read misses: cause all caches to snoop bus
•  Writes to clean blocks are treated as misses
•  Assume write-allocate in this example

CPU Read miss
Place read miss
on bus

Write-Back State Machine - CPU

10/21/10 43

•  State machine
for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back dirty
 cache block,
Place read
miss on bus CPU Write

Place Write Miss on Bus

CPU Write Miss
Write back dirty cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

10/21/10 44

Write-Back State Machine- Bus request
•  State machine

for bus requests
 for each
cache block Invalid Shared

(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

10/21/10 45

Place read miss
on bus

Write-back State Machine - Putting
 it all Together

•  State machine
for CPU requests
for each
cache block and
 for bus requests
 for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

10/21/10 46

Example

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 47

Example

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 48

Example

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 49

Example

Goes to shared because it is clean

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 50

Example

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 51

Example

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 52

Implementation Complications

•  Write Races - Who writes first??
–  Cannot update cache until bus is obtained

»  Otherwise, another processor may get bus first,
and then write the same cache block!

–  Two step process:
»  Arbitrate for bus
»  Place miss on bus and complete operation (update cache)

–  If write miss occurs to block while waiting for bus,
handle miss (invalidate may be needed) and then restart.

–  Split transaction bus:
»  Bus transaction is not really atomic:

can have multiple outstanding transactions for a block
»  Multiple misses can interleave,

allowing two caches to grab block in the Exclusive state
»  Must track and prevent multiple misses for one block

•  Must support interventions and invalidations

10/21/10 53

Limitations in Symmetric Shared-Memory
 Multiprocessors and Snooping Protocols
•  Single memory accommodate all CPUs even

 though there may be multiple memory banks
•  Bus-based

– must support both coherence traffic &
 normal memory traffic

– Solution:
» Multiple buses or interconnection networks

 (cross bar or small point-to-point)

10/21/10 54

Performance of Symmetric Shared-Memory
 Multiprocessors
•  Cache performance is combination of

1. Uniprocessor cache miss traffic

2. Traffic caused by communication
»  Results in invalidations and subsequent cache misses

•  4th C: coherence miss
–  Joins Compulsory, Capacity, Conflict
–  How significant are coherence misses?

10/21/10 55

Coherency Misses
1.  True sharing misses

•  Processes must share data for communication or
 processing

•  Types:
•  Invalidates due to 1st write to shared block
•  Reads by another CPU of modified block in different cache
•  Miss would still occur if block size were 1 word

2.  False sharing misses
•  When a block is invalidated because some word in the block,

 other than the one being read, is written into
•  Invalidation does not cause a new value to be

 communicated, but only causes an extra cache miss
•  Block is shared, but no word in block is actually shared

 " miss would not occur if block size were 1 word
•  Larger block sizes lead to more false sharing misses

10/21/10 56

Example: True v. False Sharing v. Hit?

Time P1 P2 True, False, Hit? Why?
1 Write x1

2 Read x2

3 Write x1

4 Write x2

5 Read x2

•  Assume x1 and x2 in same cache block, different
 addresses in that block.
 P1 and P2 both read x1 and x2 before.

Hit, invalidate x1/x2 in P2

False miss; x1 irrelevant to P2

False miss; x1 irrelevant to P2

True miss

Hit, invalidate x1/x2 in P2

10/21/10 57

MP Performance 4 Processor
Commercial Workload: OLTP, Decision
 Support (Database), Search Engine

True and false sharing
 doesn’t change much
 as cache size increases

10/21/10 58

MP Performance 2MB Cache
Commercial Workload: OLTP, Decision
 Support (Database), Search Engine

True and false sharing
 increase as number of
 CPUs increase. This will
 become more
 significant in the future
 as we move to many
 more processors

10/21/10 59

Outline

•  Coherence
•  Write Consistency
•  Snooping
•  Building Blocks
•  Snooping protocols and examples
•  Coherence traffic and Performance on MP
•  Directory-based protocols and examples

10/21/10 60

A Cache Coherent System Must:
•  Provide set of states, state transition diagram,

 and actions
•  Manage coherence protocol

–  (0) Determine when to invoke coherence protocol
–  (a) Find info about state of block in other caches to

 determine action
»  whether need to communicate with other cached copies

–  (b) Locate the other copies
–  (c) Communicate with those copies (invalidate/update)

•  (0) is done the same way on all systems
–  state of the line is maintained in the cache
–  protocol is invoked if an “access fault” occurs on the line

•  Different approaches (snoopy and directory
 based) distinguished by (a) to (c)

10/21/10 61

Bus-based Coherence

•  All of (a), (b), (c) done through broadcast on bus
–  faulting processor sends out a “search”
–  others respond to the search probe and take necessary

 action

•  Conceptually simple, but broadcast doesn’t
 scale with p

–  on bus, bus bandwidth doesn’t scale
–  on scalable network, every fault leads to at least p network

 transactions

•  Scalable coherence, how do we keep track as
 the number of processors gets larger

–  can have same cache states and state transition diagram
–  different mechanisms to manage protocol - directory based

10/21/10 62

Scalable Approach: Directories

•  Every memory block has associated directory
 information

–  keeps track of copies of cached blocks and their states
–  on a miss, find directory entry, look it up, and communicate

 only with the nodes that have copies if necessary
»  Presence bit keeps track of which processors have it. Use bit

 vector to save space
»  Minimizes traffic, don’t just broadcast for each access
»  Minimizes processing, not all processors have to check every

 address
–  in scalable networks, communication with directory and

 copies is through network transactions

•  Many alternatives for organizing directory
 information

10/21/10 63

Basic Operation of Directory

• k processors.
• With each cache-block in memory:

k presence-bits, 1 dirty-bit
• With each cache-block in cache:

1 valid bit, and 1 dirty (owner) bit

•  Example:
–  Read from main memory by processor i:

»  If dirty-bit OFF then { read from main memory; turn p[i] ON; }
»  if dirty-bit ON then { recall line from dirty proc; update memory;

 turn dirty-bit OFF; turn p[i] ON; supply recalled data to i}

–  Write to main memory by processor i:
»  If dirty-bit OFF then {send invalidations to all caches that have the

 block; turn dirty-bit ON; turn p[i] ON; ... }
10/21/10 64

Directory Protocol

•  Similar to Snoopy Protocol: Three states similar to snoopy
–  Shared: ! 1 processors have data, memory up-to-date
–  Uncached (no processor has it; not valid in any cache)
–  Exclusive: 1 processor (owner) has data;

 memory out-of-date

•  In addition to cache state, must track which processors
 have data when in the shared state (usually bit vector, 1 if
 processor has copy) - presence vector

•  Keep it simple:
–  Writes to non-exclusive data

=> write miss
–  Processor blocks until access completes
–  Assume messages received and acted upon in order sent (not

 realistic but we will assume)

10/21/10 65

State Transition Diagram for One Cache
 Block in Directory Based System

•  States identical to snoopy case;
 transactions very similar.

•  Transitions caused by read misses, write
 misses, invalidates, data fetch requests

10/21/10 66

CPU -Cache State Machine

•  State machine
for requests
for each
memory block

•  Invalid state
if in memory

Invalidate
send Data Write Back message

to directory

Invalidate

Invalid

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
message to
directory

CPU Write: Send
Write Miss message
to directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
 message to directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to directory

CPU read miss: send Data
 Write Back message and
 read miss to directory

Shared
(read/only)

10/21/10 67

State Transition Diagram for Directory

•  Same states & structure as the transition
 diagram for an individual cache

•  2 actions: update of directory state &
 send messages to satisfy requests

•  Tracks all copies of memory block
•  Also indicates an action that updates the

 sharing set, Sharers, as well as sending
 a message

10/21/10 68

Directory State Machine

•  State machine
for requests for each
memory block

•  Uncached state
if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
send Fetch;
Sharers += {P};
send Data Value Reply
msg to cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
send fetch;
Sharers = {P};
send Data Value Reply
msg to cache
(Write back block)

10/21/10 69

Example

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 70

Example

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 71

Example

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 72

Example

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory

A1

Write Back

A1 {P1}

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 73

Example

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory

A1 A1 {P1}

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 74

Example

P2: Write 20 to A1"

Processor 1 Processor 2 Interconnect Memory Directory

A1 A1 {P1}

• Assumes A1 and A2 map to same cache location but are not in the same memory
block (so not in the same cache block)

* Initial cache state is invalid
* Assume write allocate

10/21/10 75

Implementing a Directory

•  We assume operations atomic, but they are not;
 reality is much harder; must avoid deadlock
 when run out of bufffers in network (see
 Appendix E)

•  Optimizations:
–  read miss or write miss in Exclusive: send data directly to

 requestor from owner vs. 1st to memory and then from
 memory to requestor

10/21/10 76

Example Directory Protocol (1st Read)

E

S

I

P1 $

E

S

I

P2 $

E

S

U

M Dir
ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S

I I

U

10/21/10 77

Example Directory Protocol (Read Share)

E

S

I

P1 $

E

S

I

P2 $

E

S

U

M Dir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req
R/_

R/_

R/_ S

S

S

I
10/21/10 78

Example Directory Protocol (Wr to shared)

E

S

I

P1 $

E

S

I

P2 $

E

S

U

M Dir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pA Req_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

E

E

reply xD(pA)

W/req E
W/_

Inv/_

EX

I

10/21/10 79

Example Directory Protocol (Wr to Ex)

E

S

I

P1 $

E

S

I

P2 $

D

S

U

M Dir
ctrl R/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA) Write_back pA

Read_toUpdate pA

RX/invalidate&reply

E

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req E W/_

I

E

W/req E

RU/_

