
EEL 5764: Graduate Computer
 Architecture

 Appendix C – Memory Hierarchy
 Review

These slides are provided by:
David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross
Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

Since 1980, CPU has outpaced DRAM ...

CPU!
60% per yr!
2X in 1.5 yrs!

DRAM!
9% per yr!
2X in 10 yrs!

10!

DRAM

CPU!

Performance!
(1/latency)!

100!

1000!

Year!

Gap grew 50% per
year

Q. How do architects address this gap?
A. Put smaller, faster “cache” memories

between CPU and DRAM.
Create a “memory hierarchy”.

1977: DRAM faster than microprocessors

 Apple][(1977)!

Steve !
Wozniak!Steve

Jobs!

 CPU: 1000 ns!
 DRAM: 400 ns!

9/13/10 4

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms
(10,000,000 ns)

10 - 10 cents/bit -5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

Memory Hierarchy: Apple iMac G5

 iMac G5!
1.6 GHz!

07 Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G

Latency
Cycles,
 Time

1,
0.6 ns

3,
1.9 ns

3,
1.9 ns

11,
6.9 ns

88,
55 ns

107,

12 ms

Let programs address a memory space that
scales to the disk size, at a speed that is usually

as fast as register access

Managed !
by compiler!

Managed !
by hardware!

Managed by OS,!
hardware,!
application!

 Goal: Illusion of large, fast, cheap memory!

iMac’s PowerPC 970: All caches on-chip

(1K)!

R
eg
ist
er
s! 512K!

L2!

L1 (64K Instruction)!

L1 (32K Data)!

9/13/10 7

The Principle of Locality

•  The Principle of Locality:
–  Program access a relatively small portion of the address space at

 any instant of time.

•  Two Different Types of Locality:
–  Temporal Locality (Locality in Time): If an item is referenced, it will

 tend to be referenced again soon (e.g., loops, reuse)
–  Spatial Locality (Locality in Space): If an item is referenced, items

 whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

•  Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.

Programs with locality cache well ...

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems Journal
10(3): 168-192 (1971)!

Time!

M
em

or
y

Ad
dr

es
s

(o
ne

 d
ot

 p
er

 a
cc

es
s)
!

Spatial
Locality

Temporal
 Locality

Bad locality behavior

9/13/10 9

Memory Hierarchy: Terminology
•  Hit: data appears in some block in the upper level

 (example: Block X)
–  Hit Rate: the fraction of memory access found in the upper level
–  Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss
•  Miss: data needs to be retrieve from a block in the

 lower level (Block Y)
–  Miss Rate = 1 - (Hit Rate)
–  Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor
•  Hit Time << Miss Penalty (500 instructions)

–  May be better to recalculate results instead of refetching
Lower Level

Memory Upper Level
Memory

To Processor

From Processor
Blk X

Blk Y
9/13/10 10

Cache Measures

•  Hit rate: fraction found in that level
–  So high that usually talk about Miss rate
–  Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory

•  Average memory-access time
 = Hit time + Miss rate x Miss penalty
 (ns or clocks)

•  Miss penalty: time to replace a block from
 lower level, including time to replace in CPU

–  access time: time to lower level
 = f(latency to lower level)

–  transfer time: time to transfer block
 =f(BW between upper & lower levels)

9/13/10 11

4 Questions for Memory Hierarchy

•  Q1: Where can a block be placed in the upper level?
 (Block placement)

•  Q2: How is a block found if it is in the upper level?
 (Block identification)

•  Q3: Which block should be replaced on a miss?
 (Block replacement)

•  Q4: What happens on a write?
 (Write strategy)

9/13/10 12

Q1: Where can a block be placed in the upper
 level?

•  Remember, cache is a subset of main memory, so
 multiple main memory blocks will map the the same
 cache block

–  Fully associative, direct mapped, 2-way set associative
–  Set Associative Mapping = Block Number Modulo Number Sets

 Cache

01234567 01234567 01234567

Memory

 1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

9/13/10 13

Q2: How is a block found if it is in the upper level?

•  Tag on each block
–  No need to check index or block offset

•  Increasing associativity shrinks index, expands
 tag

Block
Offset

Block Address

Index Tag

9/13/10 14

Q3: Which block should be replaced on a
 miss?

•  Easy for Direct Mapped
•  Set Associative or Fully Associative:

–  Random
–  LRU (Least Recently Used)

»  But more complex as associativity grows

Assoc 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q4: What happens on a write?

Write-Through Write-Back

Policy

Data written to cache
 block

also written to lower
-level memory

Write data only to the
 cache

Update lower level
 when a block falls out

 of the cache

Debug Easy Hard

Do read misses
 produce writes? No Yes

Do repeated writes
 make it to lower

 level?
Yes No

Additional option -- let writes to an un-cached address allocate
a new cache line (“write-allocate”).

 Write Buffers for Write-Through Caches

Q. Why a write buffer ?

Processor
Cache

Write Buffer

Lower
Level

Memory

Holds data awaiting write-through to !
lower level memory!

A. So CPU doesn’t stall

Q. Why a buffer, why not
just one register ?

A. Bursts of writes are
common.

Q. Are Read After Write
(RAW) hazards an issue
for write buffer?

A. Yes! Drain buffer before
next read, or send read 1st
after check write buffers.

9/13/10 17

5 Basic Cache Optimizations
•  Reducing Miss Rate
1.  Larger Block size (compulsory misses)
2.  Larger Cache size (capacity misses)
3.  Higher Associativity (conflict misses)

•  Reducing Miss Penalty
4.  Multilevel Caches

•  Reducing hit time
5.  Giving Reads Priority over Writes

•  E.g., Read complete before earlier writes in write buffer

9/13/10 18

Outline
•  Memory hierarchy
•  Locality
•  Cache design
•  Virtual address spaces
•  Page table layout
•  TLB design options

The Limits of Physical Addressing

CPU! Memory!
A0-A31! A0-A31!

D0-D31! D0-D31!

“Physical addresses” of memory locations

Data

All programs share one address space: !
The physical address space!

No way to prevent a program from
accessing any machine resource!

Machine language programs must be!
aware of the machine organization !

Solution: Add a Layer of Indirection

CPU! Memory!

A0-A31! A0-A31!

D0-D31! D0-D31!

Data

User programs run in an standardized!
virtual address space!

Address Translation hardware !
managed by the operating system (OS)!

maps virtual address to physical memory!

“Physical Addresses”

Address!
Translation!

Virtual! Physical!

“Virtual Addresses”

Hardware supports “modern” OS features:!
Protection, Translation, Sharing!

9/13/10 21

Three Advantages of Virtual Memory
•  Translation:

–  Program can be given consistent view of memory, even though physical
 memory is scrambled

–  Makes multithreading reasonable (now used a lot!)
–  Only the most important part of program (“Working Set”) must be in

 physical memory.
–  Contiguous structures (like stacks) use only as much physical memory

 as necessary yet still grow later.
•  Protection:

–  Different processes protected from each other.
–  Different pages can be given special behavior

»  (Read Only, Invisible to user programs, etc).
–  Kernel data protected from User programs
–  Very important for protection from malicious programs

•  Sharing:
–  Can map same physical page to multiple users

(“Shared memory”)

Page tables encode virtual address spaces

A machine
usually supports!

pages of a few
sizes!

(MIPS R4000):!

Physical
Memory Space

A virtual address space!
is divided into blocks!

of memory called pages!
frame!
frame!

frame!

frame!

A page table is indexed by a !
virtual address!

virtual
address!

 Page Table

OS manages
the page
table

A valid page table entry translates virtual addresses
to physical memory “frame” addresses for the page!

9/13/10 23

Physical
Memory Space

•  Page table maps virtual page numbers to physical
 frames (“PTE” = Page Table Entry)

Details of Page Table

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset
12

Physical Address

frame!
frame!

frame!

frame!

virtual
address!

 Page Table

Page tables may not fit in memory!

A table for 4KB pages for a 32-bit address
space has 1M entries !

Each process needs its own address space!!

P1 index P2 index Page Offset
31 12 11 0 21 22

32 bit virtual address!

Top-level table wired in main memory!

Subset of 1024 second-level tables in
main memory; rest are on disk or

unallocated !

Two-level Page Tables!
Save space if pages tables are too big!

VM and Disk: Page replacement policy

...

Page Table!

1 0
used dirty

1 0
0 1
1 1
0 0

Set of all pages
in Memory Tail pointer:

Clear the used
bit in the
page table

Head pointer
Place pages on free
list if used bit
is still clear.
Schedule pages with
dirty bit set to
be written to disk.

Freelist

Free Pages

Dirty bit: page
written.

Used bit: set to
1 on any
reference

Architect’s role:
support setting dirty

and used bits

MIPS Address Translation: How does it work?

“Physical Addresses”

CPU! Memory!
A0-A31! A0-A31!

D0-D31! D0-D31!

Data

TLB also contains!
protection bits for virtual address!

Virtual! Physical!

“Virtual Addresses”

Translation!
Look-Aside!

Buffer!
(TLB)!

Translation Look-Aside Buffer (TLB)!
A small fully-associative cache of !

mappings from virtual to physical addresses!

Fast common case: Virtual address is in TLB,
process has permission to read/write it.

