EEL 5764: Graduate Computer
Architecture

Appendix C — Memory Hierarchy
Review

Ann Gordon-Ross
Electrical and Computer Engineering
University of Florida

http://www.ann.ece.ufl.edu/

These slides are provided by:
David Patterson
Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

1977: DRAM faster than microprocessors

TIMING . ; Seipn

fon e _/'—_/‘—-- Apple][(1977)
WHEN AND BY WHOM
MEMOAY 5 ACCESSED '
VIDED ACCESS PROCESSOR CPU : 1 000 ns
i gl oy
i S e e DRAM: 400 ns
i

@, mow on
[cOLUMN SELEeT

PROGRAMMABLE
| wEwony

| (ax 10 anx wriEs)

0 CoLUVN

*HOW AND GOyt
ADORESSES

CEEECCCrrerererere
[NE R RN RNRRNEY]

Pocesson X - i

MUK MULTIPLEXER

VIDEQ MODE CONTROL co’l"'b:l':b S
e VIOEO MUxX s
______ Steve m S
Steve Wozniak oeo,
Jobs 9 :
s RAM Applell . "
Complement| System —_da]
4 4K $1,298.00 i

48K 2,638.00

Since 1980, CPU has outpaced DRAM ...

Q. How do architects address this gap?
A. Put smaller, faster “cache” memories

Performance between CPU and DRAM.
(171atency) Create a “memory hierarchy” CPU
1000 60% per yr
2Xin1.5yrs
100 9
Gap grew 50% per
year
10 / DRAM
O,
DRAM 9 /o_per yr
e 2Xin 10 yrs
A9 A9 20
0 o0 o0
Year
Levels of the Memory Hierarchy ‘
cgpac”yr Upper Level
Access Time Stagil
Cost X;gg”gnif faster
P z ;
fogskgﬂg” s | Regls'rer'sl
«10s ns Instr. Operands Prog./compiler
Eaghe 1-8 bytes
10-?&; ns Cache
1-0.1 cents/bit cache cntl
Blocks 8-128 bytes
Main Memory
M Bytes Memory
200ns- 500ns
$.0001-.00001 cents /bit 0s
Disk Pages 512-4K bytes
G Bytes, 10 ms
(10,000,000 ns) Disk
105- 1 cents/bif . user/operator
Files Mbytes
Taq Larger
infinite T L Level
izc:g\m ape ower Le
9/13/10 4

Memory Hierarchy: Apple iMac G5

Managed Managed Managed by OS, |
by compiler by hardware hardware, '
application
07 Reg L1Inst L1 Data L2 DRAM Disk
Size 1K | 64K | 32K | 512K 256M 80G =)
Latency 3, 3, 11, 88, 107, iMac G5

C}I’_?::’ 06ns 19ns | 19ns 69ns 55ns 12ms 1.6 GHz

Goal: lllusion of large, fast, cheap memory

Let programs address a memory space that
scales to the disk size, at a speed that is usually
as fast as register access

The Principle of Locality

* The Principle of Locality:
— Program access a relatively small portion of the address space at
any instant of time.
+ Two Different Types of Locality:

— Temporal Locality (Locality in Time): If an item is referenced, it will
tend to be referenced again soon (e.g., loops, reuse)

— Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

» Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.

9/13/10 7

Memory Address (one dot per access)

iMac’s PowerPC 970: All caches on-chip
L1 (64K Instruction) | | | |

| e |

" i I = | 11 1 512K
il L2

Programs with locality cache well ...

s .~ BadTocality behavior —__

Donald J. Hatfield, Jeanette Gerald: Program T
Restructuring for Virtual Memory. IBM Systems Journal
10(3): 168-192 (1971)

Memory Hierarchy: Terminology

+ Hit: data appears in some block in the upper level
(example: Block X)

— Hit Rate: the fraction of memory access found in the upper level
— Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
* Miss: data needs to be retrieve from a block in the
lower level (Block Y)
— Miss Rate =1 - (Hit Rate)
— Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor
* Hit Time << Miss Penalty (500 instructions)
— May be better to recalculate results instead of refetching

Lower Level
To Processor | Upper Level Memory
Memory
Blk X
From Processor |:| BlY
9/13/10 . 9

4 Questions for Memory Hierarchy

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)

9/13/10 11

Cache Measures

» Hit rate: fraction found in that level

— So high that usually talk about Miss rate
— Miss rate fallacy: as MIPS to CPU performance,
miss rate to average memory access time in memory
+ Average memory-access time
= Hit time + Miss rate x Miss penalty
(ns or clocks)

* Miss penalty: time to replace a block from
lower level, including time to replace in CPU
— access time: time to lower level
= f(latency to lower level)
— transfer time: time to transfer block
=f(BW between upper & lower levels)

9/13/10 10

Q1: Where can a block be placed in the upper
level?

* Remember, cache is a subset of main memory, so

multiple main memory blocks will map the the same
cache block

— Fully associative, direct mapped, 2-way set associative
— Set Associative Mapping = BRlock Number Modulo Number Sets

Direct Mapped 2-Way Assoc
Full Mapped 15 0d 8)= 4 (12 mod 4) = 0

01234567 01234567 01234567

Cache

1111111111222222222233
0123456789012345678901234567890

Memory

9/13/10 12

Q3: Which block should be replaced on a

Q2: How is a block found if it is in the upper level? g
miss?

+ Tag on each block
— No need to check index or block offset

* Increasing associativity shrinks index, expands

» Easy for Direct Mapped

» Set Associative or Fully Associative:
— Random

tag
— LRU (Least Recently Used)
» But more complex as associativity grows
Block Address Block Size LRU Ran LRU Ran LRU Ran
Offset 16KB 52% 57% 47% 53% 44% 50%
Tag Index 64KB 19% 20% 15% 1.7% 14% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
9/13/10 13 9/13/10 14

Q4: What happens on a write? Write Buffers for Write-Through Caches

Lower

Write-Through Write-Back Cache
Processor Level
) Write data only to the Memory
Data written to cache cache e Bute

block
Policy .
B0 W 0 e Plock fals out Holds data awaiting write-through to
-level memory
of the cache lower level memory
Debug Easy Hard Q. Why a write buffer ? A.So CPU doesn’t stall
orotuea e No Yes Q. Why a buffer, why not A. Bursts of writes are
Do repeated writes Just one register ? common.
make it to lower Yo N
evel? o ° Q. Are Read After Write A. Yes! Drain buffer before
Additional obtion == let writes 1 ~cached address allocat (RAW) hazards anissue next read, or send read 1%
onalopton ~= ‘et writes % an un-cached address aflocate for write buffer? after check write buffers.

a new cache line (“write-allocate”).

5 Basic Cache Optimizations

Reducing Miss Rate

Larger Block size (compulsory misses)
Larger Cache size (capacity misses)
Higher Associativity (conflict misses)

@np=

Reducing Miss Penalty
Multilevel Caches

P

* Reducing hit time

5. Giving Reads Priority over Writes
E.g., Read complete before earlier writes in write buffer

9/13/10 17

The Limits of Physical Addressing

“Physical addresses” of memory locations

A0-A31 A0-A31
CPU Memory
DO0-D31 D0-D31

I Data I

All programs share one address space:
The physical address space

Machine language programs must be
aware of the machine organization

No way to prevent a program from
accessing any machine resource

Outline

* Virtual address spaces
+ Page table layout
TLB design options

9/13/10

Solution: Add a Layer of Indirection

“Virtual Addresses” “Physical Addresses”
RU-RJST virudr Frysical RU-AJST
CPU Address

Translation Memory
DO0-D31 D0-D31
| Data |

User programs run in an standardized
virtual address space

Address Translation hardware
managed by the operating system (OS)
maps virtual address to physical memory

Hardware supports “modern” OS features:
Protection, Translation, Sharing

Three Advantages of Virtual Memory

* Translation:

— Program can be given consistent view of memory, even though physical
memory is scrambled
— Makes multithreading reasonable (now used a lot!)

— Only the most important part of program (“Working Set”) must be in
physical memory.

— Contiguous structures (like stacks) use only as much physical memory
as necessary yet still grow later.
* Protection:
— Different processes protected from each other.
— Different pages can be given special behavior
» (Read Only, Invisible to user programs, etc).
— Kernel data protected from User programs
— Very important for protection from malicious programs
+ Sharing:
— Can map same physical page to multiple users
(“Shared memory”)

9/13/10 21

Details of Page Table

Page Table Physical
Memory Space)
Virtual Address
frame 12—
/ frame IV page ho. l offsetl
frame I
frame Page Table
°age Table
Base Reg Access
index LY_ Rights; PA
virtual InatOe
address {)ab%e table located
in physical [P page no. | offset |
memory —q2—

Physical Address

* Page table maps virtual page numbers to physical
frames (“PTE” = Page Table Entry)

9/13/10 23

Page tables encode virtual address space

Page Table Physical

A virtual address space
Memory Space

is divided into blocks

/ frame of memory called pages
frame
frame .
/ frame A machine | "*%*
4 Kbytes
usually supports Ko
virtual pages Of a.few 64 Kbytes
address Sizes 256 Kbytes
(MIPS R4000): [Mo
4 Mbytes
08 manages L 16 Mbytes
the page A page table is indexed by a
table virtual address

A valid page table entry translates virtual addresses
to physical memory “frame” addresses for the page

Page tables may not fit in memory!

A table for 4KB pages for a 32-bit address
space has 1M entries
Each process needs its own address space!

Two-level Page Tables
Save space if pages tables are too big

32 bit virtual address

31 2221 12 1 0
| P1 index | P2 index |Page Offset |

Top-level table wired in main memory

Subset of 1024 second-level tables in
main memory; rest are on disk or
unallocated

MIPS Address Translation: How does it work?

VM and Disk: Page replacement policy

Page Table “ "
Dirty bit: page ity fised “Virtual Addresses” Physical Addresses
— written. 10 | .. | |
-~ ~ , 1 0 AO0-A31 Virtual Physical AO-A31
/ N Use;l bit:setto [T4 cPU Translation "
/ N e Look-Aside emory
0 0 DO0-D31 BUffer D0-D31
I Set of all pages | g (TLB)
in Memory l’ Tail pointer: I Data I
\\ Clear the used . .
 ad \ / bitinthe Translation Look-Aside Buffer (TLB)
Head vointer™ 7’ page table Frosist A small fully-associative cache of
ead pointer - . . .
PIaceI:)ages on freex mappings from virtual to physical addresses
list if used bit .
is still clear. -TLB _also coptalns
:;:eﬂgtm pages with Architect’s role: ‘ protection bits for virtual address
irty bit set to .
be written to disk. support setting dirty Free Pages Fast common case; Virtual address is in TLE,

and used bits process has permission to read/write it.

