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Since 1980, CPU has outpaced DRAM ... 

CPU!
60% per yr!
2X in 1.5 yrs!

DRAM!
9% per yr!
2X in 10 yrs!

10!

DRAM 

CPU!

Performance!
(1/latency)!

100!

1000!

Year!

Gap grew 50% per 
year 

Q. How do architects address this gap?  
A. Put smaller, faster “cache” memories 

between CPU and DRAM.  
Create a “memory hierarchy”. 

1977: DRAM faster than microprocessors 

 Apple ][ (1977)!

Steve !
Wozniak!Steve 

Jobs!

 CPU: 1000 ns!
 DRAM: 400 ns!
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Levels of the Memory Hierarchy 

CPU Registers 
100s Bytes 
<10s ns 

Cache 
K Bytes 
10-100 ns 
1-0.1 cents/bit 

Main Memory 
M Bytes 
200ns- 500ns 
$.0001-.00001 cents /bit 
Disk 
G Bytes, 10 ms  
(10,000,000 ns) 

10   - 10  cents/bit -5 -6 

Capacity 
Access Time 
Cost 

Tape 
infinite 
sec-min 
10 -8 

Registers 

Cache 

Memory 

Disk 

Tape 

Instr. Operands 

Blocks 

Pages 

Files 

Staging 
Xfer Unit 

prog./compiler 
1-8 bytes 

cache cntl 
8-128 bytes 

OS 
512-4K bytes 

user/operator 
Mbytes 

Upper Level 

Lower Level 

faster 

Larger 



Memory Hierarchy: Apple iMac G5 

 iMac G5!
1.6 GHz!

07 Reg L1 Inst L1 Data L2 DRAM Disk 

Size 1K 64K 32K 512K 256M 80G 

Latency 
Cycles,
 Time 

1, 
0.6 ns 

3, 
1.9 ns 

3, 
1.9 ns 

11, 
6.9 ns 

88, 
55 ns 

107, 

12 ms 

Let programs address a memory space that 
scales to the disk size, at a speed that is usually 

as fast as register access 

Managed !
by compiler!

Managed !
by hardware!

Managed by OS,!
hardware,!
application!

 Goal: Illusion of large, fast, cheap memory!

iMac’s PowerPC 970: All caches on-chip 

(1K)!

R
eg
ist
er
s! 512K!

L2!

L1 (64K Instruction)!

L1 (32K Data)!
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The Principle of Locality 

•  The Principle of Locality: 
–  Program access a relatively small portion of the address space at

 any instant of time. 

•  Two Different Types of Locality: 
–  Temporal Locality (Locality in Time): If an item is referenced, it will

 tend to be referenced again soon (e.g., loops, reuse) 
–  Spatial Locality (Locality in Space): If an item is referenced, items

 whose addresses are close by tend to be referenced soon  
(e.g., straightline code, array access) 

•  Last 15 years, HW relied on locality for speed 

It is a property of programs which is exploited in machine design. 

Programs with locality cache well ... 

Donald J. Hatfield, Jeanette Gerald: Program 
Restructuring for Virtual Memory. IBM Systems Journal 
10(3): 168-192 (1971)!

Time!

M
em

or
y 

Ad
dr

es
s 

(o
ne

 d
ot

 p
er

 a
cc

es
s)
!

Spatial 
Locality 

Temporal 
 Locality 

Bad locality behavior  
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Memory Hierarchy: Terminology 
•  Hit: data appears in some block in the upper level

 (example: Block X)  
–  Hit Rate: the fraction of memory access found in the upper level 
–  Hit Time: Time to access the upper level which consists of 

RAM access time + Time to determine hit/miss 
•  Miss: data needs to be retrieve from a block in the

 lower level (Block Y) 
–  Miss Rate  = 1 - (Hit Rate) 
–  Miss Penalty: Time to replace a block in the upper level  +  

Time to deliver the block the processor 
•  Hit Time << Miss Penalty (500 instructions) 

–  May be better to recalculate results instead of refetching 
Lower Level 

Memory Upper Level 
Memory 

To Processor 

From Processor 
Blk X 

Blk Y 
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Cache Measures 

•  Hit rate: fraction found in that level 
–  So high that usually talk about Miss rate 
–  Miss rate fallacy: as MIPS to CPU performance,  

miss rate to average memory access time in memory  

•  Average memory-access time  
 = Hit time + Miss rate x Miss penalty  
  (ns or clocks) 

•  Miss penalty: time to replace a block from
 lower level, including time to replace in CPU 

–  access time: time to lower level  
 = f(latency to lower level) 

–  transfer time: time to transfer block  
 =f(BW between upper & lower levels) 

9/13/10 11 

4 Questions for Memory Hierarchy 

•  Q1: Where can a block be placed in the upper level?
  (Block placement) 

•  Q2: How is a block found if it is in the upper level? 
  (Block identification) 

•  Q3: Which block should be replaced on a miss?  
 (Block replacement) 

•  Q4: What happens on a write?  
 (Write strategy) 
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Q1: Where can a block be placed in the upper
 level?  

•  Remember, cache is a subset of main memory, so
 multiple main memory blocks will map the the same
 cache block 

–  Fully associative, direct mapped, 2-way set associative 
–  Set Associative Mapping = Block Number Modulo Number Sets 

 Cache 

01234567 01234567 01234567 

Memory 

          1111111111222222222233 
01234567890123456789012345678901 

Full Mapped Direct Mapped 
(12 mod 8) = 4 

2-Way Assoc 
(12 mod 4) = 0 
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Q2: How is a block found if it is in the upper level? 

•  Tag on each block 
–  No need to check index or block offset 

•  Increasing associativity shrinks index, expands
 tag 

Block 
Offset 

Block Address 

Index Tag 
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Q3: Which block should be replaced on a
 miss? 

•  Easy for Direct Mapped 
•  Set Associative or Fully Associative: 

–  Random 
–  LRU (Least Recently Used) 

»  But more complex as associativity grows 

Assoc 2-way 4-way 8-way 
Size LRU Ran LRU Ran LRU Ran 

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0% 
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5% 
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12% 

Q4: What happens on a write? 

Write-Through Write-Back 

Policy 

Data written to cache
 block 

also written to lower
-level memory 

Write data only to the
 cache 

Update lower level
 when a block falls out

 of the cache 

Debug Easy Hard 

Do read misses
 produce writes? No Yes 

Do repeated writes
 make it to lower

 level? 
Yes No 

Additional option -- let writes to an un-cached address allocate 
a new cache line (“write-allocate”).  

   Write Buffers for Write-Through Caches 

Q. Why a write buffer ?  

Processor 
Cache 

Write Buffer 

Lower 
Level 

Memory 

Holds data awaiting write-through to !
lower level memory!

A. So CPU doesn’t stall  

Q. Why a buffer, why not 
just one register ? 

A. Bursts of writes are 
common. 

Q. Are Read After Write 
(RAW) hazards an issue 
for write buffer? 

A. Yes!  Drain buffer before 
next read, or send read 1st 
after check write buffers. 
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5 Basic Cache Optimizations 
•  Reducing Miss Rate 
1.  Larger Block size (compulsory misses) 
2.  Larger Cache size (capacity misses) 
3.  Higher Associativity (conflict misses) 

•  Reducing Miss Penalty 
4.  Multilevel Caches 

•  Reducing hit time 
5.  Giving Reads Priority over Writes  

•  E.g., Read complete before earlier writes in write buffer 
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Outline 
•  Memory hierarchy 
•  Locality 
•  Cache design 
•  Virtual address spaces 
•  Page table layout 
•  TLB design options 

The Limits of Physical Addressing 

CPU! Memory!
A0-A31! A0-A31!

D0-D31! D0-D31!

“Physical addresses” of memory locations  

Data 

All programs share one address space: !
The physical address space!

No way to prevent a program from 
accessing any machine resource!

Machine language programs must be!
aware of the machine organization !

Solution:  Add a Layer of Indirection 

CPU! Memory!

A0-A31! A0-A31!

D0-D31! D0-D31!

Data 

User programs run in an standardized!
virtual address space!

Address Translation hardware !
managed by the operating system (OS)!

maps virtual address to physical memory!

“Physical Addresses” 

Address!
Translation!

Virtual! Physical!

“Virtual Addresses” 

Hardware supports “modern” OS features:!
Protection, Translation, Sharing!
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Three Advantages of Virtual Memory 
•  Translation:  

–  Program can be given consistent view of memory, even though physical
 memory is scrambled 

–  Makes multithreading reasonable (now used a lot!) 
–  Only the most important part of program (“Working Set”) must be in

 physical memory. 
–  Contiguous structures (like stacks) use only as much physical memory

 as necessary yet still grow later. 
•  Protection: 

–  Different processes protected from each other. 
–  Different pages can be given special behavior 

»   (Read Only, Invisible to user programs, etc). 
–  Kernel data protected from User programs 
–  Very important for protection from malicious programs 

•  Sharing: 
–  Can map same physical page to multiple users 

(“Shared memory”) 

Page tables encode virtual address spaces 

A machine 
usually supports!

pages of a few 
sizes!

(MIPS R4000):!

Physical 
Memory Space 

A virtual address space!
is divided into blocks!

of memory called pages!
frame!
frame!

frame!

frame!

A page table is indexed by a !
virtual address!

virtual 
address!

 Page Table 

OS manages 
the page 
table 

A valid page table entry translates virtual addresses 
to physical memory “frame” addresses for the page!
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Physical 
Memory Space 

•  Page table maps virtual page numbers to physical
 frames (“PTE” = Page Table Entry) 

Details of Page Table 

Virtual Address 

Page Table 

index 
into 
page 
table 

Page Table 
Base Reg 

V Access 
Rights PA 

V page no. offset 
12 

table located 
in physical 
memory 

P page no. offset 
12 

Physical Address 

frame!
frame!

frame!

frame!

virtual 
address!

 Page Table 

Page tables may not fit in memory! 

A table for 4KB pages for a 32-bit address 
space has 1M entries !

Each process needs its own address space!!

P1 index P2 index Page Offset 
31 12 11 0 21 22 

32 bit virtual address!

Top-level table wired in main memory!

Subset of 1024 second-level tables in 
main memory; rest are on disk or 

unallocated !

Two-level Page Tables!
Save space if pages tables are too big!



VM and Disk: Page replacement policy 

... 

Page Table!

1     0 
used dirty 

1     0 
0     1 
1     1 
0     0 

Set of all pages 
in Memory Tail pointer: 

Clear the used 
bit in the 
page table 

Head pointer 
Place pages on free 
list if used bit 
is still clear. 
Schedule pages with 
dirty bit set to 
be written to disk. 

Freelist 

Free Pages 

Dirty bit: page 
written. 

Used bit: set to 
1 on any 
reference 

Architect’s role: 
support setting dirty 

and used bits 

MIPS Address Translation: How does it work? 

“Physical Addresses” 

CPU! Memory!
A0-A31! A0-A31!

D0-D31! D0-D31!

Data 

TLB also contains!
protection bits for virtual address!

Virtual! Physical!

“Virtual Addresses” 

Translation!
Look-Aside!

Buffer!
(TLB)!

Translation Look-Aside Buffer (TLB)!
A small fully-associative cache of !

mappings from virtual to physical addresses!

Fast common case: Virtual address is in TLB,  
process has permission to read/write it.   


