
EEL 5764: Graduate Computer Architecture

 Introduction
Ch 1 - Fundamentals of Computer Design

These slides are provided by:
David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross
Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

8/31/10 2

EEL 5764
Instructor: Ann Gordon-Ross

 Office: 221 Larsen Hall, ann@ece.ufl.edu
 Office Hours: TBA
 Answer questions between periods
 on Tuesdays
 Different classrooms – Tuesday NEB 201
 Thursday NEB 102

Text: Computer Architecture: A Quantitative Approach, 4th
 Edition (Oct, 2006)
Web page:

 linked from http://www.ann.ece.ufl.edu/
 Sakai – lecture videos, project/homework turn in

Communication:
 Discussion groups on Sakai
 TA – Zubin Kumar (zubinkumar@ufl.edu)
 When sending email, include [EEL5764] in the subject

 line.

8/31/10 3

Course Information
•  Prerequisites

–  Basic UNIX/LINUX OS and compiler knowledge
–  High-level languages and data structures
–  Programming experience with C and/or C++

»  Extent required depends on project that you choose
–  Assembly language

•  Academic Integrity and Collaboration Policy
–  Homework/Project

»  Individual or groups of 2 or 3
»  One homework/project submission per group

–  General
»  Must do original work (no use of web material, even if

 sited)
–  Severe consequences!

•  Reading
–  Textbook, technical research papers 8/31/10 4

Course Components
•  Midterms - 50%

–  2 midterms
»  After chapter 3 and after chapter 6 (not cumulative) - Tuesdays
»  Edge students – 3 day window (Monday-Wednesday)

•  Project – 40%
–  Individual or groups of 2 or 3
–  Four graded components

•  Homework - 10%
–  4 anticipated
–  Work with same group as project, turn in one copy with all names
–  Spot graded, perhaps
–  Answers are likely on the web, but take this seriously! It WILL help

 you on the midterms.
•  Other (non-graded) components

–  Research paper reading
»  Grad students are now researchers, paper reading is a skill

–  Presentation for top course projects ff time permits

Course Project - Overview
•  Open ended computer architecture-based project
•  Topic of your choice
•  Learn first steps of research and tool usage

–  Read scholarly articles to get ideas
»  In computer science and engineering based fields,

 conferences are MORE IMPORTANT than journals
»  Survey of topic, what has been done, what needs to be

 done
»  Textbook contains many references to top papers

–  Tools
»  Use existing tool – always try this option first!
»  Create custom tool

•  Team effort
–  Individually or in groups of 2 or 3

8/31/10 5

Course Project – Components
•  Four graded components:

–  Group member selection – Tuesday, Sept 7 @ 5pm (5%)
»  Can’t change once selected
»  Group size does not affect work expectations or grading

–  Project proposal – Tuesday, Sept 28 @ 5pm (20%)
–  Status update – Tuesday, Nov 2 @ 5pm (5%)

»  With log files
–  Final report – Tuesday, Nov 30 @ 5pm (70%)

»  With log files

•  All components turned in via Sakai
–  NO LATE WORK WILL BE ACCEPTED! YES, THIS MEANS A 0!
–  Turn in early, turn in often.

•  Optional component, if time permits
–  Top projects will be invited to give a 15 minute in-class

 presentation
8/31/10 6

Course Project – Tool Set
•  Implement using Simplescalar

–  Extensively used architectural simulator for over a decade
–  Many versions (e.g., sim-cache, sim-cheetah, sim-fast, etc.),

 must use sim-outoforder
–  Very little information provided on course webpage
–  Plethora of information available via Google – Learn how to

 teach yourself!
–  Linux based, can run over Cygwin or virtual machine
–  Steps:

»  Read documentation
»  Install tool suite, execute sample benchmarks
»  Install cross compiler, compile benchmarks

•  Simplescalar not originally for multi-core
–  Multi-core version out there
–  Other simulators available
–  Can get permission to use other simulator, must ask me first

8/31/10 7

Course Project – Possible Topics
•  Implement a new research idea or verify an

 existing research idea
–  Urged to implement new idea

»  Could lead to publication
»  Hardest part about research

–  Existing idea
»  Still learn the fundamentals of research
»  Verification is an important part of research

•  Some people knowingly report false data, highly unethical, PhDs have
 been revoked

–  Grade will not be based on topic idea
»  Won’t receive extra credit for new idea
»  Won’t be graded down for existing idea

•  Bottom line – Choose a topic that interests you!!

8/31/10 8

Course Project – Possible Topics
•  Code scheduling for ILP
•  Instruction/data EncodingCache-based

 enhancements (e.g., trace cache, filter cache,
 loop cache, victim cache, stream buffers, etc.)

•  Pipeline clocking
•  Low power architectures
•  Quanitfying architectural characteristics of

 database workloads and comparing them to
 other workloads

•  Achieve fault tolerance by running 2 copies of
 instructions in unused cycles in a superscalar
 (e.g., a 4-way machine may commit less than 4
 instructions due to dependencies) and do
 instruction replication only in those cycles.

8/31/10 9

Course Project – Possible Topics
•  Compare Qureshi and Patt's insertion policies in

 ISCA 2007 to victim caches
•  Use old register values to predict addresses of

 subsequent memory accesses.
•  Attempt to quantify how much of processor

 performance gain in the past decade has come
 from faster clocks and how much from ILP.

•  Implement and compare victim caches and
 skewed-associative caches.

•  Implement and compare two recent prefetching
 schemes. Study prefetching methods (hardware
 and/or software) and their impact on
 performance

8/31/10 10

Course Project – Possible Topics
•  Evaluate cache behavior of networking (or other)

 applications or algorithms, with modification to
 exploit caches and memory hierarchies.

•  Etc….

8/31/10 11

Course Project – Project Proposal
•  1-2 page document describing proposed work

–  See course project webpage for detailed content requirements
–  Format like a scholarly publication
–  Main points:

»  Identify topic
»  Why is the topic important
»  Initial previous work survey
»  Implementation plan (experimental setup)
»  GANTT chart planning out work for each member
»  Expected results

•  Must get approval from me
–  May need to modify proposal
–  Turn in early to get early feedback

8/31/10 12

Course Project – Status Update
•  Informal document outlining status/progress of

 the project
–  Not graded on content or progress, just graded on the fact

 that this update is turned in
–  Describe any deviations from proposed GANTT timeline

»  Revise GANTT chart if necessary
»  Can’t change final goals, can only revise intermediate

 steps based on slower/faster than expected progress
–  Preliminary results
–  Log files

8/31/10 13

Course Project – Final Report
•  6 page final project report
•  IEEE or ACM formatting
•  See course project webpage for detailed content

 requirements
•  Main points:

–  Abstract
–  Related work
–  Methodology
–  Experimental results

•  Common pitfalls
–  Assume the readers already knows everything
–  Insufficient related work
–  Insufficient results analysis

8/31/10 14

Project – Log File Sample

8/31/10 15

Name: Bob Davidson (percentage effort - 40%)
Partner 1: Joe Smith (percentage effort - 20%)
Partner 2: Jane Doe (percentage effort - 40%)

Monday, Sept 1 - 4 hours
 Brainstormed on delegation of tasks for the project. Discussed

 potential instruction set modifications

....

Monday, Sept 8 - 5 hours
 Installed Cygwin twice. Read Simplescalar documentation while

 installing
Tuesday, Sept 9 - 3 hours

 Installed Simplescalar for Pisa. Ran test benchmarks
Thursday, Sept 11 - 3 hours

 Installed cross-compiler. Started to look at Simplescalar code structure

8/31/10 16

Course Focus

Understanding the design techniques, machine
 structures, technology factors, and evaluation
 methods that will determine the form of
 computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
 Evaluation

Parallelism

Computer Architecture:
• Organization
• Hardware/Software Boundary

Compilers

8/31/10 17

Outline
•  Classes of Computers
•  Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 18

Classes of Computers
•  Three main classes of computers

–  Desktop Computing
–  Servers
–  Embedded Computing

•  Goals and challenges for each class differ

8/31/10 19

Classes of Computers

Price of
 system

Price of
 micro

-
processor
 module

Critical system design issues

Desktop $500
-$5,000

$50-$500 • Price-performance
• Graphics performance

Server $5,000
-$5,000,000

$200
-$10,000

• Throughput
• Availability/Dependability
• Scalability

Embedded $10
-$100,000

$0.01
-$100

• Price
• Power consumption
• Application-specific performance

8/31/10 20

Outline
•  Classes of Computers
•  Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 21

•  Old Conventional Wisdom: Power is free, Transistors
 expensive

–  Power increased unabated, but not enough transistors to do everything
–  Clock rate continued to increase

•  New Conventional Wisdom: “Power wall” Power expensive,
 Xtors free

–  Surprise!?!? Was it really?
–  More transistors than we can afford to run

»  Can’t dissipate enough heat in an air cooled system
–  Clock rate not increasing anymore. Per-core clock rates lower.

•  Old Conventional Wisdom: Sufficiently increasing
 Instruction Level Parallelism via compilers

–  SW programmers sat back and code got faster. Compilers, architects did the work
»  I.e. Superscalar, speculative execution, VLIW, out of order execution, etc.

•  New CW: “ILP wall” law of diminishing returns on more HW
 for ILP

Crossroads: Conventional Wisdom in Comp. Arch

8/31/10 22

•  Old CW: Multiplies are slow, Memory access is fast
•  New CW: “Memory wall” Memory slow, multiplies fast

(200+ clock cycles to DRAM memory, 4 clocks for multiply (even float))
•  Old CW: Uniprocessor performance 2X / 1.5 yrs
•  New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

–  Uniprocessor performance now 2X / 5(?) yrs
–  Can’t sell based on Mhz anymore

»  Took companies by surprise – Intel cancelled products, wasn’t planning for
 future

 ! Sea change in chip design: multiple “cores”
 (2X processors per chip / ~ 2 years)
»  Can’t just crank up clock rate anymore
»  More simpler processors are more power efficient
»  2 processors with a slower clock and lower voltage is faster
»  Intel now interested in multicore
»  Parallel programming is now a hot topic, again!

Crossroads: Conventional Wisdom in Comp. Arch

8/31/10 23

Crossroads: Uniprocessor Performance

From Hennessy and Patterson, Computer
 Architecture: A Quantitative Approach, 4th
 edition, October, 2006! !20%/year?

Integer performance of SPEC

VAX – 32-bit mini
 computer. 50%
 improvement in
 6 years was
 awesome!

RISC + x86

RISC + x86

Max power dissipation of air-cooled chips
Little ILP left to exploit

Nearly unchanging memory latency

Paradigm shift eminent – ILP to TLP and DLP 8/31/10 24

Sea Change in Chip Design – Raising the
 Abstraction Level

•  Intel 4004 (1971): 4-bit processor,
2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

•  Processor is the new transistor?
•  Can we have the same # of processors as transistors
in the first machine?

•  RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

•  2006 - 125 mm2 chip, 0.065 micron CMOS
•  Equivalent of 2312 RISC II+FPU+Icache+Dcache

•  RISC II shrinks to ~ 0.02 mm2 at 65 nm
•  Smaller Caches via DRAM or

1 transistor SRAM (www.t-ram.com)

8/31/10 25

Déjà vu all over again?

•  Multiprocessors imminent in 1970s, ‘80s, ‘90s, …
–  Some progress but not much

•  Already at the limit? In 1989?
–  “… today’s processors … are nearing an impasse as technologies approach

 the speed of light..”
David Mitchell (startup comp president), The Transputer: The Time Is Now (1989)

–  Uniprocessors aren’t going to get any faster, need to be multiprocessor now

•  Transputer was premature
! Custom multiprocessor strove to lead
 uniprocessors, but no one wanted to write parallel
 code
! Why make the effort? Didn’t matter.

–  Procrastination rewarded: 2X seq. perf. / 1.5 years

8/31/10 26

Déjà vu all over again?

•  Now multi-processing is not a claim, it is actually
 happening !

•  “We are dedicating all of our future product
 development to multicore designs. … This is a sea
 change in computing”

Paul Otellini, President, Intel (2004)
•  So why is this actuality now and not just a claim as

 before?
–  Difference is all microprocessor companies switch to multiprocessors (AMD,

 Intel, IBM, Sun; Apple)
! Procrastination penalized: 2X sequential perf. / 5 yrs
! Biggest programming challenge: 1 to 2 to 200 CPUs!

8/31/10 27

Problems with Change

•  We are not ready!
–  Algorithms, Programming Languages, Compilers, Operating

 Systems, Architectures, Libraries, … not ready to supply Thread
 Level Parallelism or Data Level Parallelism for 1000 CPUs / chip

–  Past efforts were half-hearted, didn’t really need to try

•  Architectures not ready for 1000 CPUs / chip
–  Need a new style of computers
•  Unlike Instruction Level Parallelism, cannot be solved just by

 computer architects and compiler writers alone, but also cannot
 be solved without participation of computer architects

•  Field of dreams approach
–  Ship them (multi-core) and they (programmers) will use them well
–  E.g., Sony’s Cell

•  Computer Architecture: A Quantitative Approach
 explores shift from Instruction Level Parallelism to
 Thread Level Parallelism / Data Level Parallelism

8/31/10 28

Outline
•  Classes of Computers
•  Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 29

Instruction Set Architecture: Critical Interface

instruction set

software

hardware

•  Properties of a good instruction set architecture
 and good abstraction

–  Portable - lasts through many generations
–  General - used in many different ways
–  Provides convenient functionality to higher levels
–  Permits an efficient implementation at lower levels

•  Difficult!

Instruction set design is
not computer architecture

8/31/10 30

Example: 32-bit MIPS Instruction Set

MIPS is:
•  Elegant and simple
•  Widely used in embedded systems and gaming consoles
•  Basis for countless instruction sets (i.e., MIPS-like)
•  Basis for official ISA of China

Instruction types:
 Arithmetic logical - Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU, AddI,
 AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI, SLL, SRL, SRA, SLLV, SRLV, SRAV
 Memory Access - LB, LBU, LH, LHU, LW, LWL,LWR, SB, SH, SW, SWL, SWR
 Control - J, JAL, JR, JALR, BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

0 r0
r1
°
°
°
r31
PC
lo
hi

Program storage:
 2^32 bytes
 31 32-bit General Purpose Registers (GPRs) (R0=0)
 32 32-bit Floating Point (FP) regs (paired for double
 precision (DP))
 3 Special Purpose Registers (SPRs) - HI, LO, PC

32-bit instructions on word boundary

8/31/10 31

Instruction Set Architecture

ISA Defines:
•  Organization of Programmable Storage
•  Data Types & Data Structures

•  Encodings & Representations
•  Instruction Formats
•  Instruction (or Operation Code) Set
•  Modes of Addressing and Accessing
 Data Items and Instructions
•  Exception Conditions

Hardware is free to provide support any way

Bold claim - 1 instruction set with
 many different architectures

“... the attributes of a [computing] system as seen by the programmer
 (i.e., the conceptual structure and functional behavior), as distinct
 from the organization of the data flows and controls the logic design,
 and the physical implementation.” - Amdahl, Blaauw, Brooks - 1964

8/31/10 32

ISA vs. Computer Architecture
•  Old definition of computer architecture

was simply ISA design
–  Other aspects of computer design (hardware) were called

 implementation
–  Insinuates that implementation is uninteresting or less challenging
–  But really, ISA design is not very exciting

•  Our view is computer architecture >> ISA
•  Architect’s job is much more than ISA design alone;

 technical hurdles today are more challenging than
 those in ISA design

•  Since ISA design was not where the action was, some
 conclude that computer architecture (using old
 definition) is not where the action is

–  Disagree on conclusion
–  But agree that ISA design is not where the action is

8/31/10 33

Comp. Arch. is an Integrated Approach

•  What really matters is the functioning of the complete
 system

–  hardware, runtime system, compiler, operating system, and
 application

–  All parts working together to deliver a good design
–  In networking, this is called the “End-to-End argument”

•  Computer architecture is not just about transistors,
 individual instructions, or particular implementations

8/31/10 34

Computer Architecture is
Design and Analysis

Design

Ana lys is

Architecture is an iterative process:
•  Searching the space of possible designs
•  At all levels of computer systems

Creativity

Mediocre Ideas Bad Ideas

Cost /
Performance
Analysis

8/31/10 35

Outline
•  Classes of Computers Computer Science at a

 Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 36

What Computer Architecture brings to Table
•  Other fields often borrow ideas from

 architecture
–  Lots of good ideas are born here
–  Google hires architects

»  Data centers = computers, architects bring an
 understanding and unique skill set

•  Why? Architects Know the Quantitative
 Principles of Design
1.  Take Advantage of Parallelism
2.  Principle of Locality
3.  Focus on the Common Case
4.  Amdahl’s Law
5.  The Processor Performance Equation

8/31/10 37

What Computer Architecture brings to Table
•  Careful, quantitative comparisons – numbers

 driven field
–  Define, quantify, and summarize relative performance
–  Define and quantify relative cost
–  Define and quantify dependability
–  Define and quantify power

•  Culture of anticipating and exploiting advances in
 technology
–  Always on the forefront, the cutting edge

•  Culture of well-defined interfaces that are carefully
 implemented and thoroughly checked
–  HW designers have a tough job and different mindset, must be

 right the first time, there is no recompilation and downloading
 an update.

–  RAID

8/31/10 38

1) Taking Advantage of Parallelism
•  Increasing throughput of server computer via

 multiple processors or multiple disks
–  Database servers have upwards of 50 disks/CPU

•  Detailed HW design
–  Carry lookahead adders uses parallelism to speed up computing

 sums from linear to logarithmic in number of bits per operand
–  Multiple memory banks searched in parallel in set-associative

 caches

•  Pipelining: overlap instruction execution to reduce
 the total time to complete an instruction sequence.

–  Not every instruction depends on immediate predecessor !
 executing instructions completely/partially isparallel possible

–  Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

8/31/10 39

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

8/31/10

Limits to pipelining - Dependencies

•  Hazards prevent next instruction from executing
 during its designated clock cycle

–  Structural hazards: attempt to use the same hardware to do two
 different things at once

»  Early processors had a single cache, now separate level 1
 instruction and data caches

»  More likely in X86 CISC – adders used in multiple pipeline
 stages

–  Data hazards: Instruction depends on result of prior instruction still
 in the pipeline

–  Control hazards: Caused by delay between the fetching of
 instructions and decisions about changes in control flow (branches
 and jumps).

»  If you could get rid of branches, the world would be a better
 place =)

8/31/10 41

2) The Principle of Locality

•  The Principle of Locality:
–  Program access a relatively small portion of the address space at

 any instant of time.

•  Two Different Types of Locality:
–  Temporal Locality (Locality in Time): If an item is referenced, it will

 tend to be referenced again soon (e.g., loops, reuse)
–  Spatial Locality (Locality in Space): If an item is referenced, items

 whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

•  Last 30 years, HW relied on locality for memory perf.

P MEM $

8/31/10 42

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
300 – 500 ps (0.3-0.5 ns)

L1 and L2 Cache
10s-100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

Main Memory
G Bytes
80ns- 200ns
~ $100/ GByte

Disk
10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
~$1 / GByte

Registers

L1 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

L2 Cache
cache cntl
64-128 bytes Blocks

8/31/10 43

3) Focus on the Common Case
•  Common sense guides computer design

–  Since its engineering, common sense is valuable
•  In making a design trade-off, favor the frequent

 case over the infrequent case
–  E.g., Instruction fetch and decode unit used more frequently

 than multiplier, so optimize it 1st
–  E.g., If database server has 50 disks / processor, storage

 dependability dominates system dependability, so optimize it
 1st

•  Frequent case is often simpler and can be done
 faster than the infrequent case

–  E.g., overflow is rare when adding 2 numbers, so improve
 performance by optimizing more common case of no overflow

–  May slow down for overflow, but overall performance improved
 by optimizing for the normal case

•  What is frequent case and how much performance
 improved by making case faster => Amdahl’s Law

8/31/10 44

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+!
==
1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() !
"

#
$
%

&
+'(=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

8/31/10 45

Amdahl’s Law example
•  New CPU 10X faster
•  I/O bound server, so 60% time waiting for I/O

()

()
56.1

64.0
1

10
0.4 0.4 1

1

Speedup
Fraction Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall

==
+!

=

+!
=

•  Apparently, its human nature (blinded by numbers)
 to be attracted by 10X faster, vs. keeping in
 perspective its just 1.6X faster

•  Why do people gamble??
8/31/10 46

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

 Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time Need to consider all of these!! Not just clock rate!

8/31/10 47

What’s a Clock Cycle?

•  Old days:
–  Gate delays = clock cycle time
–  I.e. 10 levels of gates

•  Today: determined by numerous time-of-flight
 issues + gate delays

–  clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

8/31/10 48

Outline
•  Classes of Computers Computer Science at a

 Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 49

Trends in IC Technology
•  The most important trend in embedded systems -

 Moore’s Law
–  Predicted in 1965 by Intel co-founder Gordon Moore (Berkley

 graduate)
»  Most predictive articles are just entertainment

–  IC transistor capacity has doubled roughly every 18 months
 for the past several decades

»  Driven by both technology and business
»  Large investment in equipment to drive technology

8/31/10 CS252-s06, Lec 02-intro 50

Moore’s Law: 2X transistors / “year”

•  “Cramming More Components onto Integrated Circuits”
–  Gordon Moore, Electronics, 1965

•  # on transistors / cost-effective integrated circuit double every N months (12 " N " 24)

8/31/10 51

Moore’s Law
•  Wow

–  This growth rate is hard to imagine, most people
 underestimate

–  How many ancestors do you have from 20 generations ago
»  I.e. roughly how many people alive in the 1500’s did it take

 to make you
»  220 = more than 1 million people

–  This underestimation is the key to pyramid schemes!

8/31/10 52

Graphical Illustration of Moore’s Law

•  Something the doubles frequently grows more
 quickly than most people realize

–  A 2002 chip can hold about 15,000 1981 chips inside itself

1981 1984 1987 1990 1993 1996 1999 2002

Leading edge
chip in 1981

10,000
transistors

Leading edge
chip in 2002

150,000,000
transistors

8/31/10 53

How Do We Track Technology
 Performance Trends?

•  Drill down into 4 technologies:
–  Disks,
–  Memory,
–  Network,
–  Processors

•  Compare ~1980 Archaic (Nostalgic) vs.
~2000 Modern (Newfangled)

–  Performance Milestones in each technology
•  Compare for Bandwidth vs. Latency improvements

 in performance over time
•  Bandwidth: number of events per unit time

–  E.g., M bits / second over network, M bytes / second from disk
•  Latency: elapsed time for a single event

–  E.g., one-way network delay in microseconds,
average disk access time in milliseconds

8/31/10 54

Disks: Archaic(Nostalgic) v. Modern(Newfangled)

•  Seagate 373453, 2003
•  15000 RPM (4X)
•  73.4 GBytes (2500X)
•  Tracks/Inch: 64000 (80X)
•  Bits/Inch: 533,000 (60X)
•  Four 2.5” platters

(in 3.5” form factor)
•  Bandwidth:

86 MBytes/sec (140X)
•  Latency: 5.7 ms (8X)
•  Cache: 8 MBytes

•  CDC Wren I, 1983
•  3600 RPM
•  0.03 GBytes capacity
•  Tracks/Inch: 800
•  Bits/Inch: 9550
•  Three 5.25” platters

•  Bandwidth:
0.6 MBytes/sec

•  Latency: 48.3 ms
•  Cache: none

8/31/10 55

Latency Lags Bandwidth (for last ~20 years)

•  Performance Milestones

•  Disk: 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)
(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100
Relative Latency Improvement

Relative
BW

Improve
ment

Disk

(Latency improvement
= Bandwidth improvement)

140X BW vs. 8X lat

8/31/10 56

Memory: Archaic (Nostalgic) v. Modern (Newfangled)

•  1980 DRAM
(asynchronous)

•  0.06 Mbits/chip
•  64,000 xtors, 35 mm2
•  16-bit data bus per

 module, 16 pins/chip
•  13 Mbytes/sec
•  Latency: 225 ns
•  (no block transfer)

•  2000 Double Data Rate Synchr.
(clocked) DRAM

•  256.00 Mbits/chip (4000X)
•  256,000,000 xtors, 204 mm2

•  64-bit data bus per
DIMM, 66 pins/chip (4X)

•  1600 Mbytes/sec (120X)
•  Latency: 52 ns (4X)
•  Block transfers (page mode)

8/31/10 57

Latency Lags Bandwidth (last ~20 years)
•  Performance Milestones

•  Memory Module: 16bit plain
 DRAM, Page Mode DRAM,
 32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

•  Disk: 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)
(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100
Relative Latency Improvement

Relative
BW

Improve
ment

Memory Disk

(Latency improvement
= Bandwidth improvement)

140X vs. 8X

120X vs. 4X

8/31/10 58

LANs: Archaic (Nostalgic)v. Modern (Newfangled)

•  Ethernet 802.3
•  Year of Standard: 1978
•  10 Mbits/s

link speed
•  Latency: 3000 µsec
•  Shared media
•  Coaxial cable

•  Ethernet 802.3ae
•  Year of Standard: 2003
•  10,000 Mbits/s

 link speed (1000X)
•  Latency: 190 µsec (15X)
•  Switched media
•  Category 5 copper wire

Coaxial Cable:

Copper core
Insulator

Braided outer conductor
Plastic Covering

Copper, 1mm thick,

Twisted Pair:
"Cat 5" is 4 twisted pairs in bundle

8/31/10 59

Latency Lags Bandwidth (last ~20 years)

•  Performance Milestones

•  Ethernet: 10Mb, 100Mb,
 1000Mb, 10000 Mb/s (16x,1000x)

•  Memory Module: 16bit plain
 DRAM, Page Mode DRAM,
 32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

•  Disk: 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100
Relative Latency Improvement

Relative
BW

Improve
ment

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

140X vs. 8X

120X vs. 4X 1000X vs 13X

8/31/10 60

CPUs: Archaic (Nostalgic) v. Modern (Newfangled)

•  1982 Intel 80286
•  12.5 MHz
•  2 MIPS (peak)
•  Latency (inst) 320 ns
•  134,000 xtors, 47 mm2
•  16-bit data bus, 68 pins
•  Microcode interpreter,

separate FPU chip
•  (no caches)

•  2001 Intel Pentium 4
•  1500 MHz (120X)
•  4500 MIPS (peak) (2250X)
•  Latency 15 ns (20X)
•  42,000,000 xtors, 217 mm2

•  64-bit data bus, 423 pins
•  3-way superscalar,

Dynamic translate to RISC,
 Superpipelined (22 stage),
Out-of-Order execution

•  On-chip 8KB Data caches,
96KB Instr. Trace cache,
256KB L2 cache

8/31/10 61

Latency Lags Bandwidth (last ~20 years)

•  Performance Milestones
•  Processor: ‘286, ‘386, ‘486,

 Pentium, Pentium Pro,
 Pentium 4 (21x,2250x)

•  Ethernet: 10Mb, 100Mb,
 1000Mb, 10000 Mb/s (16x,1000x)

•  Memory Module: 16bit plain
 DRAM, Page Mode DRAM,
 32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

•  Disk : 3600, 5400, 7200, 10000,
 15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100
Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

CPU high,
Memory low
(“Memory
Wall”)

140X vs. 8X 120X
 vs.
 4X

1000X vs 13X

2250X vs. 22X

8/31/10 62

Rule of Thumb for Latency Lagging BW

•  In the time that bandwidth doubles, latency
 improves by no more than a factor of 1.2 to 1.4

(and capacity improves faster than bandwidth)

•  Stated alternatively:
Bandwidth improves by more than the square of
 the improvement in Latency

8/31/10 63

6 Reasons Latency Lags Bandwidth

1. Moore’s Law helps BW more than latency
•  Faster transistors, more transistors, smaller transistors

more pins help Bandwidth
»  MPU Transistors: 0.130 vs. 42 M xtors (300X)
»  DRAM Transistors: 0.064 vs. 256 M xtors (4000X)
»  MPU Pins: 68 vs. 423 pins (6X)
»  DRAM Pins: 16 vs. 66 pins (4X)

•  Smaller, faster transistors but communicate
over (relatively) longer lines (dies are bigger): limits latency

»  Feature size: 1.5 to 3 vs. 0.18 micron (8X,17X)
»  MPU Die Size: 35 vs. 204 mm2 (ratio sqrt ! 2X)
»  DRAM Die Size: 47 vs. 217 mm2 (ratio sqrt ! 2X)

8/31/10 64

6 Reasons Latency Lags Bandwidth (cont’d)

2. Distance limits latency
•  Size of DRAM block ! long bit and word lines

! most of DRAM access time
•  Speed of light latency and computers on network
•  1. & 2. explains linear latency vs. square BW?

3. Bandwidth easier to sell (“bigger=better”)
•  Numbers game
•  E.g., 10 Gbits/s Ethernet (“10 Gig”) vs.

 10 µsec latency Ethernet
•  4400 MB/s DIMM (“PC4400”) vs. 50 ns latency
•  Even if just marketing, customers now trained
•  Since bandwidth sells, more resources thrown at bandwidth,

 which further tips the balance

8/31/10 65

4. Latency helps BW, but not vice versa
•  Spinning disk faster improves both bandwidth and

 rotational latency
»  3600 RPM ! 15000 RPM = 4.2X
»  Average rotational latency: 8.3 ms ! 2.0 ms
»  Things being equal, also helps BW by 4.2X

•  Lower DRAM latency !
More access/second (higher bandwidth)

•  Higher linear density helps disk BW
 (and capacity), but not disk Latency

»  9,550 BPI ! 533,000 BPI ! 60X in BW

6 Reasons Latency Lags Bandwidth (cont’d)

8/31/10 66

5. Bandwidth hurts latency
•  Queues help Bandwidth, hurt Latency (Queuing Theory)
•  Wider helps BW, hurts latency

•  Adding chips to widen a memory module increases
 Bandwidth but higher fan-out on address lines may
 increase Latency

6. Operating System (SW) overhead hurts
Latency more than Bandwidth

•  Short messages, more packet overhead, less bandwidth
 but faster latency

•  Longer messages, less packet overhead, more bandwidth
 but longer latency

6 Reasons Latency Lags Bandwidth (cont’d)

8/31/10 67

Summary of Technology Trends

•  For disk, LAN, memory, and microprocessor,
 bandwidth improves by square of latency
 improvement

–  In the time that bandwidth doubles, latency improves by no more
 than 1.2X to 1.4X

•  Lag probably even larger in real systems, as
 bandwidth gains multiplied by replicated components

–  Multiple processors in a cluster or even in a chip
–  Multiple disks in a disk array
–  Multiple memory modules in a large memory
–  Simultaneous communication in switched LAN

•  HW and SW developers should innovate assuming
 Latency Lags Bandwidth

–  If everything improves at the same rate, then nothing really changes
–  When rates vary, require real innovation

8/31/10 68

Outline
•  Classes of Computers Computer Science at a

 Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 69

Define and quantify cost (1/2)
•  3 factors lower costs:
1.  Learning curve - manufacturing costs decrease over

 time measured by change in yield
•  Yield = % manufactured devices that survives the testing

 procedure
•  Yield increases over time = more efficient process over time

2.  Volume - double volume cuts cost 10%
•  Decrease time to get down the learning curve
•  Increases purchasing and manufacturing efficiency
•  Amortizes development (NRE) costs over more devices

3.  Commodities = Competition
•  Produces sold by multiple vendors in large values are essentially

 identical
•  E.g.; Keyboards, monitors, DRAMs, disks, PCs

•  IBM invented many, then sold off

•  Most of computer cost in integrated circuit
•  Cost of producing chips
•  Die cost + packaging cost + testing cost 8/31/10 70

Define and quantify cost (2/2)
•  Profit Margin = Price product sells - cost to

 manufacture
•  Margins pay for research and development (R&D),

 marketing, sales, manufacturing equipment,
 maintenance, building rental, cost of financing,
 pretax profits, and taxes

•  Most companies spend 4% (commodity PC
 business) to 12% (high-end server business) of
 income on R&D, which includes all engineering

8/31/10 71

Outline
•  Classes of Computers Computer Science at a

 Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 72

Define and quantity power (1 / 2)
•  For CMOS chips, traditional dominant energy consumption

 has been in switching transistors, called dynamic power

witchedFrequencySVoltageLoadCapacitivePowerdynamic !!!=
22/1

•  For mobile devices, energy better metric
VoltageLoadCapacitiveEnergydynamic 2

!=

•  Capacitive load a function of number of transistors
 connected to output and technology, which
 determines capacitance of wires and transistors

•  Dropping voltage helps both, so went from 5V to 1V
•  For a fixed task, slowing clock rate (frequency

 switched) reduces power, but not energy
•  To save energy & dynamic power, most CPUs now

 turn off clock of inactive modules (e.g. Fl. Pt. Unit)

8/31/10 73

Example of quantifying power
•  Suppose 15% reduction in voltage results in a 15%

 reduction in frequency. What is impact on dynamic
 power?

dynamic

dynamic

dynamic

OldPower
OldPower

witchedFrequencySVoltageLoadCapacitive
witchedFrequencySVoltageLoadCapacitivePower

!

!

!!!!

!!!

"

=

!=

=

6.0
)85(.

)85(.85.2/1
2/1

3

2

2

•  40% reduction in power
•  Hence 2 simpler (lower capacitance), slower cores

 (lower frequency) could replace 1 complex core
 for same power per chip

8/31/10 74

Define and quantity power (2 / 2)
•  Because leakage current flows even when a

 transistor is off, now static power important too

•  Leakage current increases in processors with
 smaller transistor sizes

•  Increasing the number of transistors increases
 power even if they are turned off

•  In 2006, goal for leakage is 25% of total power
 consumption; high performance designs at 40%

•  Very low power systems even gate voltage to
 inactive modules to control loss due to leakage

VoltageCurrentPower staticstatic !=

8/31/10 75

Outline
•  Classes of Computers Computer Science at a Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking, anticipating and

 exploiting advances in technology
•  Careful, quantitative comparisons:

1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 76

Define and quantity dependability (1/3)
•  How to decide when a system is operating properly?
•  Infrastructure providers now offer Service Level

 Agreements (SLA) to guarantee that their
 networking or power service would be dependable
–  If call short, money for compensation

•  Systems alternate between 2 states of service with
 respect to an SLA:

1.  Service accomplishment, where the service is
 delivered as specified in SLA

2.  Service interruption, where the delivered service is
 different from the SLA

•  Failure = transition from state 1 to state 2
•  Repair = transition from state 2 to state 1

8/31/10 77

Define and quantity dependability (2/3)
•  Module reliability = measure of continuous service

 accomplishment (or time to failure).
 2 metrics

1.  Mean Time To Failure (MTTF) measures Reliability
2.  Failures In Time (FIT) = 1/MTTF, the rate of failures

•  Traditionally reported as failures per billion hours of operation

•  Mean Time To Repair (MTTR) measures Service
 Interruption
–  Mean Time Between Failures (MTBF) = MTTF+MTTR

•  Module availability measures service as alternate
 between the 2 states of accomplishment and
 interruption (number between 0 and 1, e.g. 0.9)

•  Module availability (% time available) = MTTF /
 (MTTF + MTTR)

8/31/10 78

Example calculating reliability
•  If modules have exponentially distributed lifetimes

 (age of module does not affect probability of failure),
 overall failure rate is the sum of failure rates of the
 modules

•  Calculate FIT (per billion hours) and MTTF for 10 disks
 (1M hour MTTF per disk), 1 disk controller (0.5M hour
 MTTF), and 1 power supply (0.2M hour MTTF):

!

FailureRate =10 " (1/1,000,000) +1/500,000 +1/200,000
= (10 + 2 + 5) /1,000,000
=17 /1,000,000
=17,000FIT

MTTF=1,000,000,000 /17,000
59,000hours

But doesn’t consider
 infant mortality or
 likelihood of being

 thrown away before
 dead

8/31/10 79

Focus on common case
•  Power supply MTTF limits system MTTF
•  What if added redundant power supply, so system still

 works if one fails?
•  MTTF of pair is now mean time until one power supply

 fails divided by chance of other will fail before 1st is
 replaced

•  Since 2 power supplies and independent failures, mean
 time to one power supply fails is MTTFpowersupply/2

!

MTTFpairps =
MTTFps /2
MTTRps

MTTFps

=
MTTF 2

ps /2
MTTRps

=
MTTFps

2

2*MTTR ps

8/31/10 80

Example recalculating reliability
•  Calculate FIT and MTTF for 10 disks (1M hour MTTF per

 disk), 1 disk controller (0.5M hour MTTF), 2 power supplies
 (0.2 M hour MTTF), and MTTR for replacing a failed power
 supply is 1 day. How much better is MTTFpair? MTTFsystem?

!

MTTFpair =
200,0002

2*24
= 830,000,000

!

FailureRate =
10

1,000,000
+

1
5,000,000

+
1

830,000,000

!

=
10 + 2 + 0
1,000,000

=
12

1,000,000
=12,000FIT

!

MTTF =
1,000,000,000

12,000
= 83,000hours

•  MTTFpair 4200x; MTTF system is 1.4x; Amdahl’s Law!

8/31/10 81

Outline
•  Classes of Computers Computer Science at a

 Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 82

 Performance(X) Execution_time(Y)
 n = =
 Performance(Y) Execution_time(X)

Definition: Performance
• What does it mean to be 10% faster or slower?
• Performance is in units of things per sec

– bigger is better

•  If we are primarily concerned with response time

performance(x) = 1
 execution_time(x)

" X is n times faster than Y" means

8/31/10 83

Performance: What to measure
•  Usually rely on benchmarks vs. real workloads
•  To increase predictability, collections of benchmark

 applications, called benchmark suites, are popular
•  SPECCPU: popular desktop benchmark suite

–  CPU only, split between integer and floating point programs
–  SPECint2000 has 12 integer, SPECfp2000 has 14 floating point

 pgms
–  SPECCPU2006
–  SPECSFS (NFS file server) and SPECWeb (WebServer) added as

 server benchmarks

•  Transaction Processing Council measures server
 performance and cost-performance for databases

–  TPC-C Complex query for Online Transaction Processing
–  TPC-H models ad hoc decision support
–  TPC-W a transactional web benchmark
–  TPC-App application server and web services benchmark 8/31/10 84

Outline
•  Classes of Computers Computer Science at a

 Crossroads
•  Computer Architecture v. Instruction Set Arch.
•  What Computer Architecture brings to table
•  Technology Trends: Culture of tracking,

 anticipating and exploiting advances in
 technology

•  Careful, quantitative comparisons:
1.  Define and quantify cost
2.  Define and quantify power
3.  Define and quantify dependability
4.  Define, quantify , and summarize relative performance

•  Fallacies and Pitfalls

8/31/10 85

Fallacies and Pitfalls (1/2)
•  Fallacies - commonly held misconceptions

–  When discussing a fallacy, will try to give a counterexample.
•  Pitfalls - easily made mistakes.

–  Often generalizations of principles true in limited context
–  Show Fallacies and Pitfalls to help you avoid these errors

•  Fallacy: Benchmarks remain valid indefinitely
– Once a benchmark becomes popular, tremendous

 pressure to improve performance by targeted
 optimizations or by aggressive interpretation of the
 rules for running the benchmark:
 “benchmarksmanship.”

»  Tune to benchmark
–  70 benchmarks from the 5 SPEC releases. 70% were

 dropped from the next release since no longer useful
•  Pitfall: A single point of failure

– Rule of thumb for fault tolerant systems: make
 sure that every component was redundant so
 that no single component failure could bring
 down the whole system (e.g, power supply)

8/31/10 86

Fallacies and Pitfalls (2/2)
•  Fallacy - Rated MTTF of disks is 1,200,000 hours or

 " 140 years, so disks practically never fail
•  And disk lifetime is 5 years ! Buy 28 disks, replace

 every 5 years; on average, 28 replacements won’t
 fail

•  A better unit: % that fail (1.2M MTTF = 833 FIT)
•  Fail over lifetime: if had 1000 disks for 5 years

= 1000*(5*365*24)*833 /109 = 36,485,000 / 106 = 37
= 3.7% (37/1000) fail over 5 yr lifetime (1.2M hr MTTF)

•  But this is under pristine conditions
–  little vibration, narrow temperature range ! no power failures

•  Real world: 3% to 6% of SCSI drives fail per year
–  3400 - 6800 FIT or 150,000 - 300,000 hour MTTF [Gray & van Ingen 05]

•  3% to 7% of ATA drives fail per year
–  3400 - 8000 FIT or 125,000 - 300,000 hour MTTF [Gray & van Ingen 05]

