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What is Pipelining? 
•  Overlapping execution to produce faster results 

–  Washing and drying dishes 
–  Washing and drying laundry 
–  Automobile assembly line 
–  Chipotle, Quiznos, etc 

•  Speeds up production 
–  Master employees 
–  Eliminates “jack of all trades, master of none” syndrome 

•  Pipelining in computer architecture 
–  Multiple instructions are overlapped in execution  
–  Exploits parallelism 
–  Not visible to programmer 

•  Each stage is a pipeline “cycle” 
–  Each stage happens simultaneously so results are produced

 only as fast as the longest pipeline cycle 
–  Determines clock cycle time 
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Outline 
•  MIPS – An ISA for Pipelining 
•  5 stage pipelining 
•  Structural and Data Hazards 
•  Forwarding 
•  Branch Schemes 
•  Exceptions and Interrupts 
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A "Typical" RISC ISA (Load/Store) 

•  Invented to be easy to pipeline 
•  32-bit fixed format instruction (3 formats) 

–  Fixed length, easy to decode 

•  31+1 32-bit GPR (General Purpose Registers) (R0
 contains zero) 

•  ALU instructions 
–  3-address, reg-reg arithmetic instruction 
–  2-address, reg-im arithmetic instruction 

•  Single address mode for load/store:  
base + displacement 

–  no indirection 

•  Simple branch conditions 
•  Delayed branch 



9/13/10 5 

Example: MIPS 

Op 
31 26 0 15 16 20 21 25 

Rs1 Rd immediate 

Op 
31 26 0 25 

Op 
31 26 0 15 16 20 21 25 

Rs1 Rs2 

target 

Rd Opx 

Register-Register 
5 6 10 11 

Register-Immediate 

Op 
31 26 0 15 16 20 21 25 

Rs1 Rs2/Opx immediate 

Branch 

Jump / Call 

shamt 
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Datapath vs Control (FSM+D) 

•  Datapath: Storage, Functional units (Fus), interconnect sufficient
 to perform the desired functions 

–  Inputs are Control Points 
–  Outputs are signals 

•  Controller: State machine to orchestrate operation on the data
 path 

–  Based on desired function and signals 

Datapath Controller 

Control Points 

signals 
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Approaching an ISA – How to Pipeline 
•  Instruction Set Architecture 

–  Defines set of operations, instruction format, hardware
 supported data types, named storage, addressing modes,
 sequencing 

•  Meaning of each instructions is described in RTL
 on architected registers and memory 

•  Given the technology constraints, assemble
 adequate datapath  

–  Architected storage mapped to actual storage 
–  Function units to do all the required operations 
–  Possible additional storage 
–  Interconnect to move information among regs and FUs 

•  Implement controller (Finite State Machine (FSM))
 to drive datapath 
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Outline 
•  MIPS – An ISA for Pipelining 
•  5 stage pipelining 
•  Structural and Data Hazards 
•  Forwarding 
•  Branch Schemes 
•  Exceptions and Interrupts 
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5 Steps of MIPS Datapath 
Figure A.2, Page A-8 
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 all 
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5 Steps of MIPS Datapath 
Figure A.3, Page A-9 
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IR <= mem[PC];  

PC <= PC + 4 

A <= Reg[IRrs];  

B <= Reg[IRrt] 
rslt <= A opIRop B 

Reg[IRrd] <= WB 

WB <= rslt 
Pipeline registers 
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Inst. Set Processor Controller 

IR <= mem[PC];  

PC <= PC + 4 

A <= Reg[IRrs];  

B <= Reg[IRrt] 

Ifetch 

opFetch-DCD 

r <= A opIRop B 

Reg[IRrd] <= WB 

WB <= r 

RR 
r <= A opIRop IRim 

Reg[IRrd] <= WB 

WB <= r 

RI 
r <= A + IRim 

WB <= Mem[r] 

Reg[IRrd] <= WB 

LD 

ST 

PC <= IRjaddr if bop(A,b) 

PC <= PC+IRim 

br jmp 

JSR JR 
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Visualizing Pipelining 
Figure A.2, Page A-8 
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Pipelining is not quite that easy! 

•  Limits to pipelining: Hazards prevent next instruction
 from executing during its designated clock cycle 

–  Structural hazards: HW cannot support this combination of
 instructions (single person to fold and put clothes away) 

–  Data hazards: Instruction depends on result of prior instruction still
 in the pipeline (missing sock) 

–  Control hazards: Caused by delay between the fetching of
 instructions and decisions about changes in control flow (branches
 and jumps). 
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One Memory One Port Structural Hazards 
Figure A.4, Page A-14 
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One Memory Port/Structural Hazards 
(Similar to Figure A.5, Page A-15) 
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Bubble Bubble Bubble Bubble Bubble 

How do you “bubble” the pipe? 

Performance of Pipeline with Stalls 
•  Ideal CPI speedup is simply the pipeline depth 

–  Assumes no stalls, perfect execution 

•  But pipelining causes stalls and changes the
 clock cycle time 

•  Ideal CPI is 1 
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! 

Speedup from pipelining =
Average instruction time unpipelined
Average instruction time pipelined

                                        =
CPI unpipelined x Clock cycle unpipelined
CPI pipelined x Clock cycle time pipelined

! 

CPI pipelined =  Ideal CPI +  Pipeline stall clock cycles per instruction
                       =  1 +  Pipeline stall clock cycles per instruction

CPI unpipelined =  Ideal CPI x Pipeline Depth
                           =  Pipeline Depth



Performance of Pipelines with Stalls 
•  Lets ignore cycle time overhead for pipelining

 and assume all stages are balanced, thus cycle
 times for each are equal 

•  Assuming no pipeline stalls, speedup is equal to
 pipeline depth 

•  But pipelining changes the clock cycle time
 too…. 
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! 

Speedup =  
CPI unpipelined

                       CPI pipelined

=  Pipeline depth
1+ Pipeline stall cycles per instruction

Performance of Pipelines with Stalls 
•  Pipelining reduced clock cycle time (increases

 frequency) – less work to do in each stage 
•  CPI unpipelined is 1 

•  If all pipeline stages are balanced: 
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! 

Speedup from pipelining =  Average instruction time unpipelined
Average instruction time pipelined

                                        =
CPI unpipelined x Clock cycle time unpipelined

CPI pipelined x Clock cycle time pipelined

                                        =
1

1 +  Pipeline stall cycles per instruction
x Clock cycle time unpipelined

Clock cycle time pipelined

! 

Clock cycle pipelined =
Clock cycle unpipelined

Pipeline depth

Pipeline depth =  Clock cycle unpipelined
Clock cycle pipelined

Performance of Pipeline with Stalls 

•  And again, if no stalls, ideal speedup is equal to
 the pipeline depth 
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! 

Speedup from pipelining =
1

1 +  Pipeline stall cycles per inst
 x

Clock cycle time unpipelined
Clock cycle time pipelined

                                        =
1

1+ Pipeline stall cycles per inst
x Pipeline depth
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Example: Dual-port vs. Single-port 

•  Machine A: Dual ported memory (“Harvard Architecture”) 
•  Machine B: Single ported memory, but its pipelined

 implementation has a 1.05 times faster clock rate 
•  Ideal CPI = 1 for both 
•  Loads are 40% of instructions executed 

Machine A is 1.3 times faster  
! 

Avg inst timeA = CPI x Clock cycle time =  Clock cycle time

Avg inst timeB = CPI x Clock cycle time =  (1+.4x1) x 
Clock cycle time

1.05
                        =1.3 x Clock cycle time
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Data Hazard on R1 
Figure A.6, Page A-17 

Time (clock cycles) 

IF ID/RF EX MEM WB 
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Time (clock cycles) 

Forwarding to Avoid Data Hazard 
Figure A.7, Page A-19 
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•  Read After Write (RAW)  
InstrJ tries to read operand before InstrI writes it 

   

•  Caused by a “Dependence” (in compiler
 nomenclature).  This hazard results from an actual
 need for communication. 

Three Generic Data Hazards 

I: add r1,r2,r3 
J: sub r4,r1,r3 
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•  Write After Read (WAR)  
InstrJ writes operand before InstrI reads it 

•  Called an “anti-dependence” by compiler writers. 
This results from reuse of the name “r1”. 

•  Can’t happen in MIPS 5 stage pipeline because: 
–  All instructions take 5 stages, and 
–  Reads are always in stage 2, and  
–  Writes are always in stage 5 

I: sub r4,r1,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 

Three Generic Data Hazards 
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Three Generic Data Hazards 

•  Write After Write (WAW)  
InstrJ writes operand before InstrI writes it. 

•  Called an “output dependence” by compiler writers 
This also results from the reuse of name “r1”. 

•  Can’t happen in MIPS 5 stage pipeline because:  
–  All instructions take 5 stages, and  
–  Writes are always in stage 5 

•  Will see WAR and WAW in more complicated pipes 

I: sub r1,r4,r3  
J: add r1,r2,r3 
K: mul r6,r1,r7 
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HW Change for Forwarding 
Figure A.23, Page A-37 
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Time (clock cycles) 

Forwarding to Avoid LW-SW Data Hazard 
Figure A.8, Page A-20 
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Time (clock cycles) 
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Data Hazard Even with Forwarding 
Figure A.9, Page A-21 
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Data Hazard Even with Forwarding 
(Similar to Figure A.10, Page A-21) 
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How is this detected? 

Software Scheduling to Avoid Load
 Hazards 

Compiler optimizes
 for performance. 
 Hardware checks
 for safety. 

•  Try to produce faster code for: 
a = b + c 
d = e – f 

assuming a, b, c, d, e, and f in memory 
Slow code: 
   LW Rb, b 

   LW Rc, c 

   ADD Ra, Rb, Rc 

   SW a, Ra 

   LW Re, e 

   LW Rf, f 

   SUB Rd, Re, Rf 

   SW d, Rd 

Fast code: 
   LW Rb, b 

   LW Rc, c 

   LW Re, e 

   ADD Ra, Rb, Rc 

   LW Rf, f 

   SW a, Ra 

   SUB Rd, Re, Rf 

   SW d, Rd 
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Outline 
•  MIPS – An ISA for Pipelining 
•  5 stage pipelining 
•  Structural and Data Hazards 
•  Forwarding 
•  Branch Schemes 
•  Exceptions and Interrupts 
•  Conclusion  
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Control Hazard on Branches 
Three Stage Stall 

10: beq r1,r3,36 

14: and r2,r3,r5  

18: or  r6,r1,r7 

22: add r8,r1,r9 

36: xor r10,r1,r11 
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What do you do with the 3 instructions in between? 

How do you do it? 

Where is the “commit”? 
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Branch Stall Impact 

•  If CPI = 1, 30% branch,  
 Stall 3 cycles => new CPI = 1.9! 

•  Two part solution: 
–  Determine branch taken or not sooner, AND 
–  Compute taken branch address earlier 

•  MIPS branch tests if register = 0 or ! 0 
•  MIPS Solution: 

–  Move Zero test to ID/RF stage 
–  Adder to calculate new PC in ID/RF stage 
–  1 clock cycle penalty for branch versus 3 
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Pipelined MIPS Datapath 
Figure A.24, page A-38 
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Four Branch Hazard Alternatives 

#1: Stall until branch direction is clear 
#2: Predict Branch Not Taken 

–  Execute successor instructions in sequence 
–  “Squash” instructions in pipeline if branch actually taken 
–  Advantage of late pipeline state update 
–  47% MIPS branches not taken on average 
–  PC+4 already calculated, so use it to get next instruction 

#3: Predict Branch Taken 
–  53% MIPS branches taken on average 
–  But haven’t calculated branch target address in MIPS 

»  MIPS still incurs 1 cycle branch penalty 
»  Other machines: branch target known before outcome 
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Four Branch Hazard Alternatives 

#4: Delayed Branch 
–  Define branch to take place AFTER a following instruction 

 branch instruction 
 sequential successor1 
 sequential successor2 
 ........ 
 sequential successorn 

 branch target if taken 

–  1 slot delay allows proper decision and branch target
 address in 5 stage pipeline 

–  MIPS uses this 

Branch delay of length n 
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Scheduling Branch Delay Slots 

•  A is the best choice, fills delay slot & reduces instruction count (IC) 
•  B and C incorporate branch prediction, essentially, and instructions

 must be squashed (aborted) if incorrect 
•  In B, may need to copy sub if it can be reached by other execution

 paths 

add  $1,$2,$3 
if $2=0 then 
delay slot 

A. From before branch B. From branch target C. From fall through 

add  $1,$2,$3 
if $1=0 then 
delay slot 

add  $1,$2,$3 
if $1=0 then 
delay slot 

sub $4,$5,$6 

sub $4,$5,$6 

becomes becomes becomes 

if $2=0 then 
add  $1,$2,$3 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 

add  $1,$2,$3 
if $1=0 then 
sub $4,$5,$6 
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Delayed Branch 

•  Compiler effectiveness for single branch delay slot: 
–  Fills about 60% of branch delay slots 
–  About 80% of instructions executed in branch delay slots useful

 in computation 
–  About 50% (60% x 80%) of slots usefully filled 

•  Delayed Branch downside: As processor go to
 deeper pipelines and multiple issue, the branch
 delay grows and need more than one delay slot 

–  Delayed branching has lost popularity compared to more
 expensive but more flexible dynamic approaches 

–  Growth in available transistors has made dynamic approaches
 relatively cheaper 
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Evaluating Branch Alternatives 

Assume 4% unconditional branch, 6% conditional branch-
 untaken, 10% conditional branch-taken 

Scheduling Branch  CPI speedup v.speedup v. scheme  
 penalty   unpipelined  stall   

Stall pipeline  3  1.6 0  3.1  1.0 
Predict taken  1  1.2 0  4.2  1.33 
Predict not taken  1  1.1 4  4.4  1.40 
Delayed branch  0.5  1.1 0   4.5   1.45 

Pipeline speedup = Pipeline depth
1 +Branch frequency!Branch penalty


