
EEL 5764: Graduate Computer Architecture

 Appendix A - Pipelining Review

These slides are provided by:
David Patterson

Electrical Engineering and Computer Sciences, University of California, Berkeley
Modifications/additions have been made from the originals

Ann Gordon-Ross
Electrical and Computer Engineering

University of Florida

http://www.ann.ece.ufl.edu/

9/13/10 2

What is Pipelining?
•  Overlapping execution to produce faster results

–  Washing and drying dishes
–  Washing and drying laundry
–  Automobile assembly line
–  Chipotle, Quiznos, etc

•  Speeds up production
–  Master employees
–  Eliminates “jack of all trades, master of none” syndrome

•  Pipelining in computer architecture
–  Multiple instructions are overlapped in execution
–  Exploits parallelism
–  Not visible to programmer

•  Each stage is a pipeline “cycle”
–  Each stage happens simultaneously so results are produced

 only as fast as the longest pipeline cycle
–  Determines clock cycle time

9/13/10 3

Outline
•  MIPS – An ISA for Pipelining
•  5 stage pipelining
•  Structural and Data Hazards
•  Forwarding
•  Branch Schemes
•  Exceptions and Interrupts

9/13/10 4

A "Typical" RISC ISA (Load/Store)

•  Invented to be easy to pipeline
•  32-bit fixed format instruction (3 formats)

–  Fixed length, easy to decode

•  31+1 32-bit GPR (General Purpose Registers) (R0
 contains zero)

•  ALU instructions
–  3-address, reg-reg arithmetic instruction
–  2-address, reg-im arithmetic instruction

•  Single address mode for load/store:
base + displacement

–  no indirection

•  Simple branch conditions
•  Delayed branch

9/13/10 5

Example: MIPS

Op
31 26 0 15 16 20 21 25

Rs1 Rd immediate

Op
31 26 0 25

Op
31 26 0 15 16 20 21 25

Rs1 Rs2

target

Rd Opx

Register-Register
5 6 10 11

Register-Immediate

Op
31 26 0 15 16 20 21 25

Rs1 Rs2/Opx immediate

Branch

Jump / Call

shamt

9/13/10 6

Datapath vs Control (FSM+D)

•  Datapath: Storage, Functional units (Fus), interconnect sufficient
 to perform the desired functions

–  Inputs are Control Points
–  Outputs are signals

•  Controller: State machine to orchestrate operation on the data
 path

–  Based on desired function and signals

Datapath Controller

Control Points

signals

9/13/10 7

Approaching an ISA – How to Pipeline
•  Instruction Set Architecture

–  Defines set of operations, instruction format, hardware
 supported data types, named storage, addressing modes,
 sequencing

•  Meaning of each instructions is described in RTL
 on architected registers and memory

•  Given the technology constraints, assemble
 adequate datapath

–  Architected storage mapped to actual storage
–  Function units to do all the required operations
–  Possible additional storage
–  Interconnect to move information among regs and FUs

•  Implement controller (Finite State Machine (FSM))
 to drive datapath

9/13/10 8

Outline
•  MIPS – An ISA for Pipelining
•  5 stage pipelining
•  Structural and Data Hazards
•  Forwarding
•  Branch Schemes
•  Exceptions and Interrupts

9/13/10 9

5 Steps of MIPS Datapath
Figure A.2, Page A-8

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg File

M
U

X M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder

 Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1
RS2

Imm

No pipelining here, just
 steps. 1 cycle does it
 all

9/13/10 10

5 Steps of MIPS Datapath
Figure A.3, Page A-9

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

Next PC

A
ddress

RS1
RS2

Imm

M
U

X

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]
rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
Pipeline registers

9/13/10 11

Inst. Set Processor Controller

IR <= mem[PC];

PC <= PC + 4

A <= Reg[IRrs];

B <= Reg[IRrt]

Ifetch

opFetch-DCD

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

RR
r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST

PC <= IRjaddr if bop(A,b)

PC <= PC+IRim

br jmp

JSR JR

9/13/10 12

Visualizing Pipelining
Figure A.2, Page A-8

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

Cycle 8 Cycle 9

Shows BW vs. Latency Read register

Write register

9/13/10 13

Pipelining is not quite that easy!

•  Limits to pipelining: Hazards prevent next instruction
 from executing during its designated clock cycle

–  Structural hazards: HW cannot support this combination of
 instructions (single person to fold and put clothes away)

–  Data hazards: Instruction depends on result of prior instruction still
 in the pipeline (missing sock)

–  Control hazards: Caused by delay between the fetching of
 instructions and decisions about changes in control flow (branches
 and jumps).

9/13/10 14

One Memory One Port Structural Hazards
Figure A.4, Page A-14

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

9/13/10 15

One Memory Port/Structural Hazards
(Similar to Figure A.5, Page A-15)

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7 Cycle 5

Reg A
LU

DMem Ifetch Reg

Bubble Bubble Bubble Bubble Bubble

How do you “bubble” the pipe?

Performance of Pipeline with Stalls
•  Ideal CPI speedup is simply the pipeline depth

–  Assumes no stalls, perfect execution

•  But pipelining causes stalls and changes the
 clock cycle time

•  Ideal CPI is 1

9/13/10 16

!

Speedup from pipelining =
Average instruction time unpipelined
Average instruction time pipelined

 =
CPI unpipelined x Clock cycle unpipelined
CPI pipelined x Clock cycle time pipelined

!

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
 = 1 + Pipeline stall clock cycles per instruction

CPI unpipelined = Ideal CPI x Pipeline Depth
 = Pipeline Depth

Performance of Pipelines with Stalls
•  Lets ignore cycle time overhead for pipelining

 and assume all stages are balanced, thus cycle
 times for each are equal

•  Assuming no pipeline stalls, speedup is equal to
 pipeline depth

•  But pipelining changes the clock cycle time
 too….

9/13/10 17

!

Speedup =
CPI unpipelined

 CPI pipelined

= Pipeline depth
1+ Pipeline stall cycles per instruction

Performance of Pipelines with Stalls
•  Pipelining reduced clock cycle time (increases

 frequency) – less work to do in each stage
•  CPI unpipelined is 1

•  If all pipeline stages are balanced:

9/13/10 18

!

Speedup from pipelining = Average instruction time unpipelined
Average instruction time pipelined

 =
CPI unpipelined x Clock cycle time unpipelined

CPI pipelined x Clock cycle time pipelined

 =
1

1 + Pipeline stall cycles per instruction
x Clock cycle time unpipelined

Clock cycle time pipelined

!

Clock cycle pipelined =
Clock cycle unpipelined

Pipeline depth

Pipeline depth = Clock cycle unpipelined
Clock cycle pipelined

Performance of Pipeline with Stalls

•  And again, if no stalls, ideal speedup is equal to
 the pipeline depth

9/13/10 19

!

Speedup from pipelining =
1

1 + Pipeline stall cycles per inst
 x

Clock cycle time unpipelined
Clock cycle time pipelined

 =
1

1+ Pipeline stall cycles per inst
x Pipeline depth

9/13/10 20

Example: Dual-port vs. Single-port

•  Machine A: Dual ported memory (“Harvard Architecture”)
•  Machine B: Single ported memory, but its pipelined

 implementation has a 1.05 times faster clock rate
•  Ideal CPI = 1 for both
•  Loads are 40% of instructions executed

Machine A is 1.3 times faster
!

Avg inst timeA = CPI x Clock cycle time = Clock cycle time

Avg inst timeB = CPI x Clock cycle time = (1+.4x1) x
Clock cycle time

1.05
 =1.3 x Clock cycle time

9/13/10 21

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Data Hazard on R1
Figure A.6, Page A-17

Time (clock cycles)

IF ID/RF EX MEM WB

9/13/10 22

Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure A.7, Page A-19

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

9/13/10 23

•  Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

•  Caused by a “Dependence” (in compiler
 nomenclature). This hazard results from an actual
 need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

9/13/10 24

•  Write After Read (WAR)
InstrJ writes operand before InstrI reads it

•  Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

•  Can’t happen in MIPS 5 stage pipeline because:
–  All instructions take 5 stages, and
–  Reads are always in stage 2, and
–  Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

9/13/10 25

Three Generic Data Hazards

•  Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

•  Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

•  Can’t happen in MIPS 5 stage pipeline because:
–  All instructions take 5 stages, and
–  Writes are always in stage 5

•  Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

9/13/10 26

HW Change for Forwarding
Figure A.23, Page A-37

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

What circuit detects and resolves this hazard?

9/13/10 27

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard
Figure A.8, Page A-20

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

9/13/10 28

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding
Figure A.9, Page A-21

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Load use dependency

9/13/10 29

Data Hazard Even with Forwarding
(Similar to Figure A.10, Page A-21)

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU

DMem Ifetch Reg

Reg Ifetch A
LU

DMem Reg Bubble

Ifetch A
LU

DMem Reg Bubble Reg

Ifetch A
LU

DMem Bubble Reg

How is this detected?

Software Scheduling to Avoid Load
 Hazards

Compiler optimizes
 for performance.
 Hardware checks
 for safety.

•  Try to produce faster code for:
a = b + c
d = e – f

assuming a, b, c, d, e, and f in memory
Slow code:
 LW Rb, b

 LW Rc, c

 ADD Ra, Rb, Rc

 SW a, Ra

 LW Re, e

 LW Rf, f

 SUB Rd, Re, Rf

 SW d, Rd

Fast code:
 LW Rb, b

 LW Rc, c

 LW Re, e

 ADD Ra, Rb, Rc

 LW Rf, f

 SW a, Ra

 SUB Rd, Re, Rf

 SW d, Rd

9/13/10 31

Outline
•  MIPS – An ISA for Pipelining
•  5 stage pipelining
•  Structural and Data Hazards
•  Forwarding
•  Branch Schemes
•  Exceptions and Interrupts
•  Conclusion

9/13/10 32

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

Reg A
LU

DMem Ifetch Reg

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?

9/13/10 33

Branch Stall Impact

•  If CPI = 1, 30% branch,
 Stall 3 cycles => new CPI = 1.9!

•  Two part solution:
–  Determine branch taken or not sooner, AND
–  Compute taken branch address earlier

•  MIPS branch tests if register = 0 or ! 0
•  MIPS Solution:

–  Move Zero test to ID/RF stage
–  Adder to calculate new PC in ID/RF stage
–  1 clock cycle penalty for branch versus 3

9/13/10 34

A
dder

IF/ID

Pipelined MIPS Datapath
Figure A.24, page A-38

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg File

M
U

X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

M
EM

/W
B

EX
/M

EM

4

A
dder

Next
 SEQ
 PC

RD RD RD W
B

D
at

a

•  Interplay of instruction set design and cycle time.

Next PC

A
ddress

RS1
RS2

Imm
M

U
X

ID
/EX

9/13/10 35

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

–  Execute successor instructions in sequence
–  “Squash” instructions in pipeline if branch actually taken
–  Advantage of late pipeline state update
–  47% MIPS branches not taken on average
–  PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
–  53% MIPS branches taken on average
–  But haven’t calculated branch target address in MIPS

»  MIPS still incurs 1 cycle branch penalty
»  Other machines: branch target known before outcome

9/13/10 36

Four Branch Hazard Alternatives

#4: Delayed Branch
–  Define branch to take place AFTER a following instruction

 branch instruction
 sequential successor1
 sequential successor2

 sequential successorn

 branch target if taken

–  1 slot delay allows proper decision and branch target
 address in 5 stage pipeline

–  MIPS uses this

Branch delay of length n

9/13/10 37

Scheduling Branch Delay Slots

•  A is the best choice, fills delay slot & reduces instruction count (IC)
•  B and C incorporate branch prediction, essentially, and instructions

 must be squashed (aborted) if incorrect
•  In B, may need to copy sub if it can be reached by other execution

 paths

add $1,$2,$3
if $2=0 then
delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then
delay slot

add $1,$2,$3
if $1=0 then
delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then
add $1,$2,$3

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

add $1,$2,$3
if $1=0 then
sub $4,$5,$6

9/13/10 38

Delayed Branch

•  Compiler effectiveness for single branch delay slot:
–  Fills about 60% of branch delay slots
–  About 80% of instructions executed in branch delay slots useful

 in computation
–  About 50% (60% x 80%) of slots usefully filled

•  Delayed Branch downside: As processor go to
 deeper pipelines and multiple issue, the branch
 delay grows and need more than one delay slot

–  Delayed branching has lost popularity compared to more
 expensive but more flexible dynamic approaches

–  Growth in available transistors has made dynamic approaches
 relatively cheaper

9/13/10 39

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
 untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v.speedup v. scheme
 penalty unpipelined stall

Stall pipeline 3 1.6 0 3.1 1.0
Predict taken 1 1.2 0 4.2 1.33
Predict not taken 1 1.1 4 4.4 1.40
Delayed branch 0.5 1.1 0 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency!Branch penalty

